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Abstract— We undertake a longitudinal study with high tem-
poral recording density, capturing daily electroencephalograms
(EEG) of an individual in an in-situ setting for 370 consecutive
days. Resting-state EEG retains a high level of stability over
the course of the year, and inter-session variability remains
unchanged, whether the sessions are one day, one week, or one
month apart. On the other hand, EEG for certain cognitive
tasks experience a steady decline in similarity over the same
time period. Clustering analysis reveals that days with low sim-
ilarity scores should not be considered as outliers, but instead
are part of a cluster of days with a consistent alternate spectral
signature. This has methodological and design implications for
the selection of baseline references or templates in fields ranging
from neurophysiology to brain-computer interfaces (BCI) and
neurobiometrics.

I. INTRODUCTION

How do a person’s brainwaves change from day to day,
week to week, and month to month? How do they change
over the course of a year?

Longitudinal electroencephalography (EEG) studies, con-
ducted at timescales ranging from days to weeks, months,
and even years, have found strong intra-individual stability
of EEG based on pairwise comparisons of recorded signals.
However, all of these studies have temporally sparse data
– typically 2-3 recording sessions [1], [2], [3], [4], [5], [6],
and in one case 9 sessions per subject [7]. Consequently, they
are unable to provide a granular view of neural dynamics,
robust estimates of inter-session variability, or identification
of clusters or trends over time.

In this study, we undertake a long-term, intra-individual,
in-situ EEG study with high temporal density. We collected
daily EEG recordings for an individual (paper author) for 370
consecutive days. High temporal density is key to this study,
allowing us to overcome the limitations of previous studies.
First, we can go from point-estimates to actual distributions
of inter-session variability, offering a more complete picture
of how the signals change from day to day, week to week,
etc. Second, we can track changes over the course of a year
by comparing daily signals against baseline days from the
beginning of the year, allowing us to identify any trends
over time. Third, we can identify and analyze clusters of
days where the signals exhibit different signatures from one
another.

Improving our knowledge on the temporal dynamics of
brainwave signals at this timescale is important for many
applications. In the field of brain-computer interfaces (BCI),
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researchers have long sought the optimal user-training and
system-calibration strategies given inter-session variability of
the EEG signals [8], [9], [10], [11], [12], [13], [14], [15]. In
the field of biometrics, researchers have been investigating
the reliability of brainwave-based user-authentication sys-
tems over time [16], [17], [18]. For psychiatry, understanding
brain changes at the timescale of weeks and months is of
great importance to the diagnosis and treatment of major
psychiatric disorders [19].

In the spirit of Poldrack’s intra-individual longitudinal
fMRI study [19], we make the tradeoff between temporal
density and subject population size, limiting ourselves to one
subject who is also the researcher. The advantages of having
the researcher as subject include: consistent execution of
tasks, sustained motivation over time, and access to calendar
metadata. Researcher bias is avoided by full separation of
data collection and data analysis, i.e., the analysis com-
menced only after the completion of data collection. The
high temporal density also necessitates the recording in an
in-situ setting, whether in the residence of the subject, or
on the road when the subject is traveling. This requirement
provides us with an opportunity to measure changes in an
everyday, non-laboratory setting. While we carefully control
the experimental conditions of the recording sessions, we
also take advantage of the fact that the subject may go
traveling, fall sick, etc., over the course of the year, and
investigate if any of these events may result in observable
changes in data.

II. MATERIALS AND METHODS
A. Data Collection

371 daily EEG recordings were collected from a single
subject (male, right-handed, age 44 at start of study, no
known health issues) who is the study author, using a single-
channel wireless EEG device (Mindwave Mobile, Neurosky,
San Jose, California). The device consists of a ThinkGear
microchip and embedded firmware, along with 10mm dry
stainless-steel active, reference, and ground electrodes. The
reference and ground electrodes are housed in an ear-clip
for the left ear, while the active electrode is connected via
a flexible plastic arm from the headset to be positioned at
the FP1 site of the International 10-20 System. Electrical
potentials at the active and reference electrodes are subtracted
through common-mode rejection to derive a single-channel
signal which is amplified 8000 times. Sampling and amplifi-
cation of the raw 512 Hz data are performed on the embedded
microchip and transmitted by Bluetooth to a computer for
recording and offline analysis.
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For each daily session, the subject was seated in a station-
ary position in front of two notebook computers. The first
computer ran the Neuroview software for data acquisition,
while the second ran a pre-recorded audio-visual stimulus
using Quicktime. The stimulus is taken directly from [20]
and includes six tasks over 319 seconds. The tasks alternate
between eyes-closed and eyes-open, with verbal and on-
screen instructions before each task. Each of the tasks lasts
30 seconds. Task 1 (Rest) is the eyes-closed resting-state
baseline condition. Task 2 (Math) is a sequence of twelve on-
screen simple arithmetic operations lasting 2.5 seconds each.
Task 3 (Music) involves eyes-closed listening to a 30-second
instrumental piece. Task 4 (Video) involves watching a 30-
second Superbowl advertisement. Task 5 (Retrieval) requires
the subject to mentally retrieve as many word items within a
given category as possible within 30 seconds. Task 6 (Color
Counting) is a visual counting task where the subject silently
counts the number of rectangles of a chosen color on a se-
quence of on-screen images. All stimuli are fixed throughout
the study, e.g., the arithmetic operations and their sequence,
the music piece, are unchanged. However, some tasks require
active response to stimuli (Math, Retrieval, Color Counting)
whereas others involve only passive consumption of content
(Music and Video).

We control for circadian rhythms by recording in the
same time window (before bedtime) everyday. To avoid any
potential bias, we completed the entire year’s data collection
before commencing data analysis. The recording from Day
217 is discarded because of technical issues during recording,
leaving us with 370 days of EEG data.

B. Data Analysis

We focus on the spectral patterns and properties in this
analysis. In particular, we use the periodogram (power spec-
tral density estimate) to quantify the changes of the EEG
over time.

To compute the daily periodogram, we start with a simple
pre-processing step. From the 30 seconds of raw EEG data
for each task, we programmatically extract a 15-second
epoch that is absent of any signal spikes above a +/-
50µV amplitude threshold. From this epoch, we use Welch’s
method with Hann Window, 2-second window size, 50%
window overlap, and median averaging, to compute the
periodogram. From the periodogram, we extract the values in
the 0.5-40Hz range as a 80-dimensional vector, which spans
the delta (δ: 0.5-4Hz), theta (θ: 4-8Hz), alpha (α: 8-12Hz),
beta (β: 12-30Hz), and low-gamma (γ: 30-40Hz) bands.

With this set of 370 daily periodograms, we perform a
number of analyses. For any given pair of periodograms, we
compute the Pearson product-moment correlation coefficient
(ρ) to quantify the level of similarity or dissimilarity between
the two vectors. We use this correlation metric for temporal
analysis at two levels: inter-session variability (changes from
session to session), and long-term stability (changes over the
course of one year).

For comparison, we apply identical steps to obtain peri-
odograms from the recordings from a single session of 30

Fig. 1. Matrix of Pearson correlation coefficients between all pairs of
daily periodograms for the resting condition.

other subjects from a publicly available reference dataset
[20], collected using the same stimulus and hardware as the
current study. From these periodograms, we compute inter-
individual correlation coefficients against the 30 subjects.

From the same periodograms, we also produce and ana-
lyze the following time-series datasets: (i) total power, (ii)
absolute and relative power for each frequency band, (iii)
peak alpha frequency (PAF) and its corresponding peak alpha
amplitude.

We perform hierarchical clustering analysis to determine
if there exists clusters of days with similar EEG signals,
and if so, identify the characteristics of the clusters. Finally,
we access the subject’s calendar to see if particular activities
(e.g., travel days, teaching days, sick days) or calendar events
(e.g., academic semester in session or semester break, day
of the week) may be associated with changes in the signals.

III. RESULTS

We first report results for the eyes-closed resting-state
condition, before expanding to the five subsequent cognitive
tasks.

A. Long-Term Stability

Pairwise comparisons between daily periodograms pro-
duce a correlation coefficient matrix (Fig. 1) that shows a
high level of similarity across the entire year. The overall
mean correlation of 0.73 is consistent with results from
previous longitudinal EEG studies [1], [2], [3], [4], [5], [6],
[7]. We can visually observe a small number of days, notably
Days 189 and 194, as well as other days spread throughout
the year, that are dissimilar from most other days in the year.

Fig. 2A plots, for every day in the year, the mean
correlation to all other days of the year (µ=0.73, σ=0.06).
Nineteen days (5%) have their mean correlations more than
two standard deviations below the mean. While none of them
occur on successive days, they do exhibit some clustering,
with 3 days in the first month, and 9 days in the third quarter.
In contrast, the second quarter is under-represented with just
1 day. While these low-similarity days lead to a small dip in
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Fig. 2. Daily metrics over the course of one year, with 30-day moving
averages. A: Mean correlation to all days. B: Mean correlation to first 30
days of the year, and to 30 other persons in reference dataset. C: Daily total
power (0.5-40Hz). The 19 days with correlations two standard deviations
below the mean are colored in orange. D: 30-day moving averages of peak
alpha frequency (blue) and peak alpha amplitude (orange).

the 30-day moving average (e.g., during the third quarter),
there is no trend or seasonality observed overall.

For comparison, we compute daily inter-individual cor-
relations using a reference dataset of 30 subjects, who
participated in a single session using the same hardware
and audio-visual stimulus as the current study [20]. We also
compute daily intra-individual correlations using the first
30 days of the year as baseline. Fig. 2B shows the inter-
individual correlations (µ=0.45, σ=0.10) to be significantly
below the intra-individual ones throughout the year. This
gap is consistent with the within-subjects and between-
subjects similarity scores in [16], and is the basis underlying
many brainwave-based authentication systems [21], [22],
[23], [24], [25], [26], [27].

Total signal power exhibits no trend or seasonality, hover-
ing in the 100-300 µV2 range, with a 30-day moving average
under 200 µV2 (Fig. 2C). Absolute and relative powers of
individual frequency bands show no trend or seasonality
either. Of the 19 low-similarity days, not all have above-
average power levels. Conversely, not all days with elevated
power levels have low similarity. This suggests that signal
power alone is insufficient in explaining differences between
signals from different days.

Previous work found the peak alpha frequency as a stable
neurophysiological trait marker [28]. Here, we see that it
stays within the 10-11Hz range, and the corresponding peak
alpha amplitude within the 14-21µV range, for the entire
year (Fig. 2D).

B. Inter-Session Variability

We can take the correlation coefficient of the pair of peri-
odograms from adjacent-day sessions as a random variable,
and obtain 369 data points from the 370 daily sessions.

Individual inter-session correlation values can be as low as
0.25 and as high as 0.96. The resulting distribution (µ=0.75,
σ=0.11) has a strong left skew (skew=-0.99), due to the

Fig. 3. Inter-session variability unchanged, whether the sessions
are one day, one week, one month, or longer apart. A: Boxplots of
correlations for different inter-session gaps. B: Mean correlations for all
pairs of periodograms separated by a gap of G days.

closeness to the upper bound for correlation coefficients. We
can see the long tail in the boxplot (Fig. 3A, first column).
Applying Fisher’s transformation results in a normal distri-
bution (µ=1.01, σ=0.26) in the z’ coordinate, consistent with
the distribution for Pearson correlations for bivariate normal
observations.

Changing the gap between session pairs from one day to
other durations (e.g., 7 days, 30 days, 90 days, 180 days)
produces very similar distributions (Fig. 3A). This suggests
that inter-session variability is not affected by the temporal
distance between sessions.

More generally, if we pick a pair of periodograms from
G days apart, how similar are they? Fig. 3B shows, for
each value of the inter-session gap G, the mean correlation
of all day-pairs with gap G. Remarkably, we find that the
correlation coefficient to be consistently at the 0.73 level,
regardless of whether the sessions are a day, a week, a month,
or even a year apart.

Different frequency components exhibit very different
patterns of inter-session variability (Fig. 4). Individual bands
like delta and theta can produce inter-session correlations
that span almost the entirety of the -1 to +1 range, whereas
gamma remains highly similar across sessions. The com-
bination of alpha and beta bands (8-30Hz), as well as the
combination of alpha through gamma bands (8-40Hz), retain
distributions most similar to that of the overall signal.

Fig. 4. Inter-session variability by frequency bands. Different frequency
bands exhibit very different patterns of inter-session variability.

C. Cluster Analysis

We perform hierarchical clustering to investigate if the
low-similarity days are truly outlier days, or are similar
among themselves. Employing agglomerative clustering with
Ward’s linkage criterion [29], we identify a primary cluster
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Fig. 5. Daily EEG signals can be grouped into clusters. A: The 26
days in small cluster (in orange) have low similarity scores compared to the
rest of the year, but they are highly similar to other days within the same
cluster. B: The median periodogram of this cluster (in orange) has higher
magnitudes in the delta (0.5-4Hz) and theta (4-7Hz) bands.

(Cluster 1) with 344 days and a secondary cluster (Cluster
2) with 26 days spread throughout the year. Cluster 2 days
(Fig. 5A) have a lower mean correlation of 0.60, compared
against 0.74 for Cluster 1, and 0.73 for the entire year. 14
of the 19 low-similarity days belong to this cluster.

More importantly, we can quantify the within-cluster and
between-cluster similarities. Within Cluster 1, the mean
correlation is 0.76. Within Cluster 2, the mean correlation
is 0.74, approaching that of Cluster 1. Both of these are
higher than the overall mean of 0.73. Conversely, between
the two clusters, the mean correlation is significantly lower
at 0.59 (first three rows of Table I).

Cluster Days Power MF PAF PAA ρii ρij
All Days 370 160.8 10.0 10.0 14.5 0.73 –
1 344 158.7 10.5 10.0 14.4 0.76 0.59
2 26 241.5 8.0 10.0 15.5 0.74 0.59
1A 113 177.9 10.0 10.0 20.5 0.81 0.77, 0.71
1B 138 138.4 10.5 10.0 11.3 0.78 0.77, 0.73
1C 93 181.9 9.5 10.0 13.6 0.76 0.71, 0.73

TABLE I
Characteristics of clusters. DAYS: NUMBER OF DAYS. POWER: TOTAL

POWER OF MEDIAN PERIODOGRAM (µV2 ). MF: MEDIAN FREQUENCY OF

MEDIAN PERIODOGRAM (HZ). PAF: PEAK ALPHA FREQUENCY OF

MEDIAN PERIODOGRAM (HZ). PAA: PEAK ALPHA AMPLITUDE OF

MEDIAN PERIODOGRAM (µV). ρii : MEAN CORRELATION WITHIN

CLUSTER. ρij : MEAN CORRELATION BETWEEN CLUSTERS.

Fig. 5B shows the median periodograms of the two clus-
ters. We see that Cluster 2 days have higher delta and theta
band powers than Cluster 1 days. The median periodogram
for Cluster 2 also has a significantly lower median frequency
(8.0Hz) than that of Cluster 1 (10.5Hz).

Within Cluster 1, we can identify three sub-clusters with
distinct metrics (last three rows of Table I). Cluster 1A
has high peak alpha amplitude (20.5µV), Cluster 1B has
low signal power (138.4µV2) and low peak alpha ampli-
tude (11.3µV), while Cluster 1C has low median frequency
(9.5Hz), indicating relative strength in the delta and theta
bands. The sub-clusters see elevated within-cluster similar-
ities (0.81, 0.78, 0.76) even as they retain high between-
cluster similarities with one another (0.77, 0.73, 0.71).

We can examine inter-session variability on a per-cluster

Fig. 6. Inter-session variability for different clusters. Cluster 2 has a
significantly higher floor, and Clusters 1A, 1B, and 1C have significantly
higher means and/or smaller inter-quartile ranges, than the overall dataset.

basis. Taking the correlation coefficient of the pair of peri-
odograms from adjacent sessions from the same cluster, we
see significantly higher means and/or smaller inter-quartile
ranges for Clusters 1A, 1B, and 1C (Fig. 6), and significantly
higher floors for 1A, 1B, 1C, and 2.

These results suggest that the low-similarity days are
actually not outliers, but rather belong to an alternate cluster
of days with an alternate brainwave signature. Even within
the “high similarity” main cluster, it is possible to further
differentiate the days into more homogeneous sub-clusters
with various signal feature distinctions.

D. Calendar Analysis

We use the subject’s calendar metadata to investigate if the
results of our analysis might be explained by the calendar
activities of the subject (Fig. 7). We identify teaching days
(n=83), faculty meeting days (n=12), travel days (n=22,
over 4 trips), and sick days (n=5, with headaches and other
symptoms of the flu or cold). We also assign the days into
four groups according to the institution’s academic calendar:
spring semester (n=123), summer break (n=94), autumn
semester (n=122), and winter break (n=31).

We find no instance where patterns in the resting-state
brainwave signals can be explained by the calendar activities.
Running a battery of two-sample Komolgorov-Smirnov tests
for the various groupings of days, we find no support for
differences in mean similarities between (i) teaching days vs.
non-teaching days, (ii) days before teaching days vs. other
days, (iii) faculty meeting days vs. other days, (iv) travel
days vs. non-travel days, (v) sick days vs. non-sick days,
(vi) semester in-session vs. semester break days, and (vii)
weekdays vs. weekend days.

Projecting the periodgram vectors onto a 2-dimensional
feature space using the t-distributed stochastic neighbor
embedding algorithm [30], we also find no clustering of days
based on these calendar groupings (Fig. 8).
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Fig. 7. Calendar analysis. None of the calendar groupings of days reveal
differences from other days.

Fig. 8. Stochastic neighbor embedding of periodograms in 2D feature
space. We can observe agglomeration of days according to the four clusters
(Panel A), but not for other groupings of days based on the calendar, such
as the first and final 30 days in the year (Panel B), travel days and sick
days (Panel C), and weekdays and weekends (Panel D).

E. Non-Resting Cognitive Tasks

The subject performed six tasks (Rest, Math, Music, Video,
Retrieval, Color Counting) per session, starting with the
eyes-closed resting-state task, then alternating between eyes-
open and eyes-closed for the subsequent tasks. Each task has
its own distinct spectral signature that persists throughout the
year, seen in the quarterly median periodograms in Fig. 9.
The eyes-open tasks (bottom row) have lower alpha peaks,
both in amplitude and frequency, than the eyes-closed tasks
(top row) due to alpha attenuation. It is noteworthy that the
split alpha peak [31] is clearly visible for the Music task, the
beta rhythm peak at 18-20Hz is absent for the Video task,
and the Retrieval task produces narrower/sharper peaks for
the alpha, delta, and theta bands.

The median periodogram for the first 90 days of the
year (Q1, or first quarter) differs from those of the other
three quarters for several tasks. Most prominently, we see a
strengthening of the alpha and beta peaks for the Math task
after Q1. Conversely, we see a weakening of the delta band

Fig. 9. Median periodogram for each quarter (90 days) of the year.
Each task has its own distinct spectral signature that persists throughout the
year, with the strengthening and/or weakening of various peaks at different
times.

for the Math, Retrieval, and Color Counting tasks after Q1.
For the Video task, we see a strengthening of the alpha band,
but only after Q2. While the sources of these shifts are not
clear, it is possible that they reflect the effects of habituation,
sensitization, or implicit subject learning, occurring over
different periods in the year.

Using the first 30 days as baseline, we compute the
correlation between each day’s periodogram and each of the
30 baseline periodograms, and plot the mean correlation over
time (Fig. 10). Different temporal dynamics emerge for the
eyes-open versus eyes-closed tasks.

Fig. 10. Daily mean correlation to 30 baseline days from the beginning
of the year. 30-day moving average in blue. Linear regression fit line in grey.
The three eyes-open tasks (bottom row) show steadily declining similarity
over time, while the three eyes-closed tasks (top row) show temporary dips
in the third quarter.

The three eyes-closed tasks (Rest, Music, Retrieval) show
a slight dip in Q3 in an otherwise stable similarity level
of 0.70-0.73. A possible reason is the time-of-year and its
effects on the EEG. In this case, Q3 corresponds to the
summer season, and previous studies have found evidence
that EEG may be modulated by variations in temperature,
humidity, and daylight hours [32], [33].
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For the Math task, we see a steady decline from 0.7 to
0.6 over the course of the year. We see similar but less
steep declines for the Video and Color Counting tasks. These
patterns suggest that the effects of any possible learning
and/or sensitization to the task stimuli emerge in a steady
and gradual manner over time.

An analysis of inter-session variability provides additional
support for the temporal similarity decline. For example,
for the Math task, we see that the general shape of the
distribution is retained, with a strong left skew and a long tail
in the boxplot (Fig. 11A). As we increase the inter-session
gap from one day to one week, one month, three months,
and six months, we see a rightward (downward) shift in
the distribution. Correspondingly, we see a steady decline in
the mean correlation with increasing inter-session gap (Fig.
11B).

Fig. 11. Inter-session variability for Math Task. A: Increase in inter-
session gap causes a rightward (downward) shift in the distribution of
inter-session correlation. B: Mean correlations for all pairs of periodograms
separated by a gap of G days also declines with increasing G.

Clustering analysis indicates that these temporal shifts are
driven by the days in the main cluster, not the secondary
cluster that has fewer days. For example, for the Rest task,
the 3rd quarter dip is seen only for Cluster 1 days. For the
Math task, only Cluster 1 days exhibit significant decline in
similarity against their corresponding baseline days (Fig. 12).
The 39 days in the secondary cluster, which have elevated
delta and theta powers, actually maintain a higher similarity
level to their baseline days within their cluster.

Fig. 12. Daily mean correlation to baseline days for two clusters for
the Rest and Math tasks. For the Rest task, only the main cluster (blue)
shows a dip in the third quarter. For the Math task, the main cluster (blue)
shows much more significant decline in similarity to the baseline days in
its cluster over time. The secondary cluster days (orange) actually maintain
high similarity to the baseline days within its cluster.

Collectively, these results suggest that temporal shifts may
occur, either temporarily or more permanently, depending
on the specific cognitive task. Further research is needed

to uncover the relationship between task characteristics and
temporal dynamics, and establish the presence or absence of
seasonality effects at the periodicity of 12 months.

IV. DISCUSSION

By increasing temporal recording density by two orders-
of-magnitude over the state-of-the-art, we obtain a highly
granular view of neural dynamics over time. For our subject,
his resting-state signals retained a high similarity level over
one year. At the same time, the signals from any given
day may deviate significantly from the others. This has
important methodological implications – we should avoid
using a single day as baseline/reference, and the choice
of baseline/reference days is very important for any EEG
analysis.

Furthermore, we find that “outlier” days are actually not
outliers, but rather belong to an alternate cluster of days
with an alternate brainwave signature. Further sub-clustering
with additional fine-grained features is also possible. This has
implications not just for experimental design but also for the
design and calibration of BCI and EEG-based authentication
systems. For example, a biometric system that supports
multiple brainwave templates, corresponding to the clusters,
may yield improvements in reducing false-rejection rates.

Beyond the resting-state, the eyes-open cognitive tasks
show steady declines in similarity over the entire year. We
do not know if these declines would have continued at the
same rate beyond the study’s duration, and if there is some
level at which the declines will end. We also asked earlier if
the third quarter dips for the eyes-closed tasks would recur
seasonally. These open questions point to future studies with
even longer durations.

In this study, each task is performed once daily. For
BCI and neurobiometric applications, it may be worthwhile
to investigate if repetition spacing [34] or task execution
frequency (e.g., more than once daily, weekly, monthly) has
an impact. Similarly, future work can investigate additional
types of cognitive tasks, e.g., motor-imagery tasks for sen-
sorimotor rhythms.

Previous studies have investigated and validated the perfor-
mance of mobile/portable, single-channel EEG systems [35],
[36], [37], and measured test-retest reliability using the same
EEG system as the current study [5]. Our study was able to
collect data with clean and rich signal features that allow
for robust analysis in the spectral dimension. Future work
can investigate coherence dynamics using multi-electrode
systems, or combine EEG with fNIRS, fMRI modalities to
interrogate structural and functional changes over different
timescales.

V. CONCLUSION

This study demonstrates that long-term, temporally dense,
in-situ EEG studies can reveal important insights on the tem-
poral dynamics of neural signals. Over the course of one year,
the signals either retain high similarity, or undergo a gradual
and steady similarity decline, while exhibiting significant
inter-session variability. Thanks to the high recording density,
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we establish the existence of primary and secondary clusters
of days where the EEG recordings consistently exhibit alter-
nate spectral signatures. Days within each cluster show high
within-cluster similarity, suggesting that they should not be
treated as outlier days in analysis. A calendar analysis finds
no evidence that the subject’s calendar activities, such as
teaching or traveling, or day of the week, have effects on
the similarity of the signals.
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