
  

Abstract— Affective Computing is a multidisciplinary area of 

research that allows computers to perform human emotion 

recognition, with potential applications in areas such as 

healthcare, gaming and intuitive human computer interface 

design. Hence, this paper proposes an affective interaction 

system using dry EEG-based Brain-Computer Interface and 

Virtual Reality (BCI-VR). The proposed BCI-VR system 

integrates existing low-cost consumer devices such as an EEG 

headband with frontal and temporal dry electrodes for brain 

signal acquisition, and  a low-cost VR headset that houses an 

Android handphone. The handphone executes an in-house 

developed software that connects wirelessly to the headband, 

processes the acquired EEG signals, and displays VR content to 

elicit emotional responses. The proposed BCI-VR system was 

used to collect EEG data from 13 subjects while they watched 

VR content that elicits positive or negative emotional responses. 

EEG bandpower features were extracted to train Linear 

Discriminant and Support Vector Machine classifiers. The 

classification performances of these classifiers on this dataset 

and the results of a public dataset (SEED-IV) are then evaluated. 

The results in classifying positive vs negative emotions in both 

datasets (~66% for 2-class) show promise that positive and 

negative emotions can be detected by the proposed low cost BCI-

VR system, yielding nearly the same performance on the public 

dataset that used wet EEG electrodes. Hence the results show 

promise of the proposed BCI-VR system for real-time affective 

interaction applications in future. 

Index Terms— Emotion detection; EEG; Virtual reality (VR); 

Affective computing (AfC) 

I. INTRODUCTION 

As one of the most fundamental mental processes, 
emotions play an essential role in a person’s interaction with 
the external world. Hence a goal of Affective Computing is to 
develop socially smart Human Computer Interface (HCI) 
systems that deciphers and responds to the emotional states of 
the user [1]. A person’s external expressions can be measured 
through audio/visual signals, while inner emotional state are 
assessed with self-reports or via physiological signals [2] such 
as the non-invasive electroencephalogram (EEG) signals, 
since emotions originate from the cerebral cortex. Hence, 
identifying EEG correlates of emotions complements 

subjective self-reports by providing a window into the inner 
emotional state of the individual. Furthermore, EEG has a 
relatively higher temporal resolution compared to other brain 
signal acquisition methods such as functional near infrared 
imaging (fNIRS) or functional magnetic resonance imaging 
(fMRI). In recent years, lightweight dry EEG headsets are 
available to everyday consumers too, making it more 
accessible for researchers to study the identification of EEG 
correlates in emotion recognition studies. 

Eliciting emotions in human emotion recognition studies 
can be categorized into active and passive modes based on the 
nature of the stimuli [3]. In active elicitation methods, 
individuals could be instructed to adopt certain behaviours or 
facial expressions that might evoke different affective states 
naturally. In passive emotional elicitation, stimuli which are 
designed to evoke different emotions are presented. Such 
stimuli could be standardized to ensure all individuals have the 
same viewing experience. They are usually presented as:  

1) Audio stimuli – such as the IADS (International 
Affective Digitalised Sound System) [4] database , comprising 
more than 100 sounds categorized along the affective 
dimensions of valence, arousal and dominance.  

2) visual stimuli – such as the IAPS (International 
Affective Picture System) database [5], which has been used 
as an elicitation source for emotion recognition research.  

3) audio-visual stimuli – such as the SEED-IV (SJTU 
Emotion EEG IV Dataset)[6], which uses films to elicit  
various levels of valence and arousal. Films present dynamic 
visual and auditory stimuli that may bear more similarities to 
real life scenarios [7]. In this dataset, EEG data is recorded 
from a full scalp gel-based wet EEG device.   

An important factor for such stimuli in emotion elicitation 
is the degree of immersion that individuals experience. 
Research has shown that self-reported intensity of emotion is 
significantly greater in immersive than in non-immersive 
environments, with the presentation of the same content [8]. 
An example of an immersive environment is virtual reality 
(VR), which isolates the user from external world 
interferences, and enhances the immersive experience to 
induce emotions through the simulation of real experiences. 
With advances in computer graphics technology, the display 
of immersive VR content on mobile phones is possible, thus 
making it more accessible to everyday consumers. 

In [9], the authors explored recording wet EEG and 
electrocardiogram(ECG) signals while subjects viewed VR 
content using a Samsung Gear VR headset. Nine EEG 

An Affective Interaction System using Virtual Reality and Brain-

Computer Interface 

Zheng Yang Chin, Zhuo Zhang, Chuanchu Wang, Kai Keng Ang  

1 Research supported by Agency for Science, Technology and Research, 
(A*STAR), Singapore. Z. Y. Chin, Z. Zhang, C. Wang, K. K. Ang are with 

Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way #21-01 

Connexis (South Tower) Singapore 138632 Email: {zychin, zzhang, 
ccwang, kkang}@i2r.a-star.edu.sg. K.K. Ang is with the School of 

Computer Science and Engineering, Nanyang Technological University, 

Singapore kkang@ntu.edu.sg 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 6183



  

electrodes were placed in the frontal, central and parietal 
regions. Combining EEG and ECG features with their SVM 
classifier yielded around 70% to 71% test set accuracy to 
differentiate positive and negative valence, and positive and 
negative arousal. The results from [9] provide motivation in 
this paper to explore using commercially available dry EEG 
headsets for BCI-VR applications. Hence, this paper seeks to: 
investigate eliciting emotional responses using a proposed 
BCI-VR mobile device system, where the it integrates existing 
low cost consumer devices: an dry EEG headband and a VR 
headset that houses an Android handphone. To evaluate its 
feasibility, an in-house EEG data collection would be 
conducted where subjects used the BCI-VR system while 
viewing different VR content. EEG classification models are 
trained to discriminate two different emotions elicited. To 
benchmark the performance of the models and the proposed 
BCI-VR system, the EEG data from the SEED-IV public 
dataset will analysed. 

II. METHODOLOGY 

A. Proposed BCI-VR System 

The proposed system is shown in Figure 2.The hardware 
comprises a Muse (https://choosemuse.com/) EEG headband 
with forehead (AF1, AF2) and temporal (TP9, TP10) dry 
electrodes and a Google Daydream VR headset that houses an 
Android handphone. The software deployed in Android 
device includes user interface (UI) and data communication 
components. The UI component is a customized Unity3D 
application that displays VR content and solicits subjective 
feedback from the subject at the end of each movie. The 
feedback is controlled purely by interacting with the screen 
content with head movement thus no keyboard or mouse is 
needed. The VR content displays a virtual cinema that shows 
normal video content or VR360 videos. VR360 videos, also 
known as 360-degree video or immersive videos, are video 
recordings where a view in every direction is recorded at the 
same time with an omnidirectional camera or a collection of 
cameras. During playback on normal flat display the viewer 
has control of the viewing direction like a panorama. The 
communication software is an extension of the Neurocomm 
Platform [10] for the Android platform. It communicates with 
EEG headset via Bluetooth to received EEG signals at 256 Hz 
sampling rate. The EEG signals and the associated events that 

occurred during the experiment are stored in the handphone 
for further analysis.  

B. Emotion experiment protocol 

The experimental procedures involving human subjects 
described in this paper were approved by the Institutional 
Review Board (2018-008). 13 subjects participated in the 
experiment. The experiment protocol elicits emotional 
responses as shown in Figure 1. There were 20 trials in total, 
where each trial presented a video; which was either eliciting 
a negative (stress) or positive (relax) emotion in the subject. 
These videos were curated from YouTube VR360 video clips. 
Each video lasted ~90s. 

 

Figure 2: (left) Proposed BCI-VR system integrates a commercially available 
EEG headband and a VR headset which houses a handphone displaying VR 

content to the subject. (right) sample VR movie showing a beach scene 

 
 

Figure 3: EEG segmented in each trial to form two classes for emotion 

classification; Positive (Relax) versus Negative (Stress) emotions. Non-
overlapping 4s segments are extracted, resulting in 20 samples from each trial  

C. EEG data processing 

The continuous EEG data was visually inspected offline 

using MNE Python [11]. Noisy EEG electrodes were removed 

from two subjects for subsequent analysis.  The EEG data was 

divided into two classes: positive and negative emotions 

elicited while viewing the stress videos and relax videos.  
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Figure 1 : Experiment protocol of the proposed BCI-VR system evaluation for emotion classification. In each trial, the subject watches a video. In the first 
trial, a negative emotion (stress) video lasting 90s is presented. The subject then provides subjective feedback. In the next trial, a positive emotion (relax) 

video lasting another 90s is presented, followed by another subjective feedback. At the end, a 10s break period is given before the next trial begins.  
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1) Filtering and data splitting 

A highpass filter at 0.2 Hz and a notch filter of 50Hz were 

applied to remove baseline drifts and power line noise 

respectively. The raw EEG data was segmented into 20 trials 

of 90s each. The 20 trials were split into training (12), 

validation (4) and test (4) sets. The splitting is carried out at 

the trial level to avoid data leakage contamination among the 

three sets during hyperparameter tuning and classification. 

2) Segmenting into 4-second windows for classification 

Five bandpass filters (1-4Hz, 4-8Hz, 8-14Hz, 14-31Hz 

and 31-50Hz) were then applied onto each 90s trial. Each trial 

was split into 4s non-overlapping samples for classification as 

shown in Figure 3. This yielded 22 samples (22 x 4s = 88s) 

from each trial. For each subject, the training set, validation 

set and test set comprised 264, 88 and 88 samples. 

D. Model Training 

1) Log bandpower feature extraction and selection 
EEG log bandpowers were computed from each sample, 

yielding 20 features (5 bandpass filters x 4 electrodes). Feature 
selection using Fisher Ratio (FR) is subsequently employed to 
select a set of most discriminative features, i.e. features with 
the highest Fisher Ratio (FR) for classification. FR is defined 
as the ratio of the variance of the between classes SB to the 
variance of the within classes Sw, shown in (1) and (2). 

FR = 𝑆𝐵/𝑆𝑊 (1) 

𝑆𝐵 = ∑
𝑛𝑘
𝑛
(𝑚𝑘 −𝑚)

2

𝐶

𝑘=1

, 𝑆𝑊 = ∑
𝑛𝑘
𝑛
∑(𝑥𝑘𝑗 −𝑚𝑘)

2

𝑛𝑘

𝑗=1

𝐶

𝑘=1

 (2) 

where C is the total number of classes, nk is the number of 

trials in class k, n is the total number of trials, mk is the mean 

of the feature for class k, m is the overall mean of the feature, 

xkj is the feature for the j-th trial in class k. The number of 

selected features is a hyperparameter that was tuned during 

the classifier model training.  

2) Classification 

Two classifiers were evaluated: Linear Discriminant 

Analysis (LDA) and Support Vector Machine (SVM). For the 

SVM classifier, the hyperparameters included the C value, the 

Gamma value and kernel type (radial basis function or 

sigmoid). For LDA, the hyperparameter included the 

Shrinkage value. The models were first trained using data 

from the training set and hyperparameters were tuned using 

the validation set, where an exhaustive search (Grid Search) 

approach was employed. The best hyperparameters were 

selected based on the best validation set accuracy. Finally, the 

model is retrained with the best hyperparameters on the 

training and validation set, and a final evaluation result on the 

test set is presented.  

E. Comparison of results with existing public dataset 

Analysis with a publicly available dataset, SEED-IV [6] 

was also carried out to compare the usage of the same EEG 

processing methods with wet EEG electrodes. The SEED-IV 

dataset comprises data from 15 subjects, watching film clips 

which induces happy, sad, fear or neutral emotions. There 

were 72 trials per subject. EEG data was recorded from 62 

wet electrodes using the Neuroscan EEG amplifier. The raw 

EEG data from FP1, FP2, T7 and T8 in the dataset was 

processed using the same methods as described earlier. These 

electrodes best match the electrode positions used in the 

MUSE headset. For each subject, the number of trials in the 

training set, validation set and test set were 36, 24 and 12 

respectively.  

III. RESULTS AND DISCUSSION 

This section presents analysis results for data collected 

using the proposed system (denoted as BCI-VR) and the 

SEED-IV dataset. 

TABLE I: 2-CLASS CLASSIFICATION ACCURACIES ON TRAINING, VALIDATION 

AND TEST SETS FOR BOTH LDA AND SVM FOR BCI-VR DATASET 

2-class LDA SVM 

Subject training  valuation testing training valuation testing 

1 0.686 0.773 0.500 0.788 0.761 0.455 

2 0.678 0.739 0.739 0.693 0.693 0.693 

3 0.678 0.576 0.491 0.570 0.606 0.436 

4 0.678 0.705 0.716 0.826 0.807 0.705 

5 0.735 0.716 0.807 0.777 0.773 0.761 

6 0.731 0.727 0.545 0.648 0.750 0.727 

7 0.693 0.614 0.614 1.000 0.682 0.614 

8 0.670 0.807 0.784 0.678 0.830 0.807 

9 0.754 0.739 0.773 0.723 0.727 0.795 

10 0.773 0.716 0.716 0.769 0.705 0.716 

11 0.701 0.625 0.636 0.917 0.670 0.727 

12 0.735 0.705 0.511 0.830 0.818 0.511 

13 0.886 0.568 0.602 0.852 0.614 0.580 

mean 0.723 0.693 0.649 0.775 0.726 0.656 

std 0.059 0.074 0.114 0.115 0.073 0.125 

TABLE II: 4-CLASS CLASSIFICATION ACCURACIES ON TRAINING, VALIDATION 

AND TEST SETS FOR BOTH LDA AND SVM FOR SEED-IV PUBLIC DATASET 

4-class LDA SVM 

Subject training  valuation testing training valuation testing 

1 0.465 0.415 0.326 0.652 0.424 0.300 

2 0.592 0.569 0.562 0.709 0.600 0.572 

3 0.469 0.448 0.233 0.677 0.519 0.349 

4 0.610 0.507 0.538 0.957 0.510 0.531 

5 0.558 0.476 0.372 0.629 0.510 0.331 

6 0.422 0.446 0.346 0.635 0.514 0.395 

7 0.558 0.559 0.497 0.547 0.541 0.444 

8 0.590 0.505 0.538 0.702 0.554 0.608 

9 0.649 0.526 0.369 0.745 0.541 0.431 

10 0.552 0.468 0.444 0.623 0.549 0.446 

11 0.485 0.442 0.341 0.890 0.443 0.469 

12 0.438 0.380 0.372 0.856 0.402 0.379 

13 0.532 0.416 0.413 0.586 0.420 0.400 

14 0.576 0.606 0.433 0.731 0.641 0.505 

15 0.711 0.453 0.590 0.853 0.534 0.615 

mean 0.547 0.481 0.425 0.720 0.513 0.452 

std 0.080 0.063 0.102 0.120 0.067 0.098 

A. 2-class results from proposed BCI-VR 

Table I shows the 2-class (negative emotion / positive 

emotion) classification accuracies on the training, validation 

and test set. The SVM classifier with optimized 

hyperparameters yielded higher classification accuracies than 

the LDA classifier on average over all subjects for all three 

sets. Though not directly comparable, the results(~66%)  are 

slightly lower than the results in [9] (~70%). In [9], both EEG 
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and ECG signals were recorded, where 9 wet EEG electrodes 

were placed over the frontal, central and parietal regions, with 

a pair of electrodes below the mastoid as reference, and a pair 

of ECG leads on the rib and collarbone.  

B. Comparing results from BCI-VR and SEED-IV 

Table II shows the 4-class (happy, sad, fear, neutral) 

classification accuracies on the training set, validation set and 

test set of the SEED-IV dataset. Similar to the results in Table 

I, the SVM classifier yielded higher accuracies across all three 

sets too.  

For a more direct comparison between the results from the 

BCI-VR dataset and the SEED-IV dataset, the four classes 

from the SEED-IV dataset were combined to form two 

classes: negative emotion (sad, fear) and positive emotion 

(happy, neutral). The confusion matrices and classification 

accuracies for SVM on the test sets are shown in Table III. 

The accuracies for the majority class classifier (naïve) are also 

presented. The 2-class SVM classification accuracy results on 

the test sets for both BCI-VR and SEED-IV are similar and is 

higher than the naïve accuracies. The results suggest that 

existing EEG processing algorithms could classify positive 

and negative emotions elicited by proposed BCI-VR setup 

with the dry EEG headset, around the same performance by 

wet EEG electrodes. The temporal region of the brain is 

responsible for emotions while the frontal region is associated 

with cognitive processing [12] thus the TP9 and TP10 

electrodes in the dry EEG headset could have contributed to 

the classification performance. In [6], the authors also 

identified the temporal electrodes in lieu of the 62-channel 

Neuroscan EEG amplifier for use in their device as well. 

Nonetheless, there are limitations in the current study. 

First, the subjective feedback was not accounted for yet. 

Second, the current prediction is based on binary 

classification. Third, the EEG signals could be easily 

contaminated artefacts such as EOG and EMG signals. 

Hence, future work could include exploring how to integrate 

he subjective feedback, a continuous score for emotion 

categorization and identifying how the EEG could be 

contaminated. 

  
TABLE III: 2-CLASS SVM CONFUSION MATRICES ON TEST SET FOR BCI-VR 

AND SEED-IV. THE CLASSIFICATION ACCURACIES IN BOTH DATASETS ARE 

SIMILAR AT 0.65~0.66. THE NAÏVE ACCURACIES ARE COMPUTED USING A 

MAJORITY CLASS CLASSIFIER 

dataset  
Predicted (%) Accuracy 

Positive Negative SVM Naïve 

BCI-VR 
Positive 0.59 0.41 

0.65 0.51 
Negative 0.29 0.71 

SEED-IV 
Positive 0.65 0.35 

0.66 0.54 
Negative 0.33 0.67 

IV. CONCLUSION 

This paper proposed and investigated the performance of 

a low-cost EEG-based BCI-VR mobile device system which 

integrates an existing dry EEG acquisition device and a VR 

headset that presents audiovisual stimuli using an Android 

handphone. Compared to an off-the-shelf integrated EEG and 

VR system, the design of the proposed BCI-VR system 

enables a cost-effective and convenient experiment to elicit 

emotions for Affective Computing studies. To evaluate the 

system, an in-house data collection was carried out on 13 

subjects, who viewed positive and negative VR content while 

4-channel EEG data was collected.  EEG-based classification 

using EEG log bandpower features and SVM yielded a 

validation and test accuracy of about 73% and 66% for 2-

classes (positive versus negative) respectively. The test set are 

similar to the 2-class test set results obtained on the SEED-IV 

public dataset. The similarity in classification performance 

suggest that the EEG processing algorithms could classify 

positive and negative emotions elicited by the proposed BCI-

VR setup with the dry EEG headset, at around the same 

performance on the public dataset which uses wet EEG 

electrodes. Hence, the results provide motivation to extend 

the functionality of the proposed BCI-VR system to include 

real-time emotion recognition in future.  
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