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Abstract— In conventional Minimally Invasive Surgery, the
surgeon conducts the operation while a human or robot holds
the laparoscope. Laparoscope control is returned to the surgeon
in teleoperated camera holding robots, but simultaneously
controlling the laparoscope and surgical tools might be cogni-
tively demanding. On the other hand, fully automated camera
holders are still limited in their performance. To help the
surgeon to better focus on the main operation while maintaining
their control authority, we propose an automatic laparoscope
zoom factor control framework for Robot-Assisted Minimally
Invasive Surgery. In this paper, we present the perception
section of the framework. It extracts and uses the surgical
tool’s geometric characteristics to adjust the laparoscope’s zoom
factor, without any artificial markers. The acceptable range
and tooltip’s position frequency during operations are analysed
based on the gallbladder removal surgery dataset (Cholec80).
The common range and tooltip’s heatmap are identified and
presented quantitatively.

I. INTRODUCTION

In the past decades, innovations in surgical robotics have
provided surgeons with improved efficiency, safety, and
convenience compared to traditional surgery, where surgeons
cooperate with human assistants [1]. In laparoscopic surgery,
using a camera holding robot to replace the human camera
holder gives surgeons direct control of the laparoscope
and reduces suboptimal communications with assistants [2].
Manual camera holding robots are usually controlled via
voice interface [3], head/gaze motion interface [4], foot
interface [5], or joystick [6]. However, the additional laparo-
scope adjustment task increases the surgeon’s cognitive load
and is distracting. Therefore, upgrading the system from a
fully teleoperated robotic arm to a system that can complete
certain tasks or sub-tasks autonomously may help to reduce
the surgeon’s cognitive load [7]. Automation can include
in-plane movement, insertion/zoom adjustment [8], [9], and
complete automation of the laparoscope [10], [11], [12], [13],
[14].
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A stable and optimal laparoscopic view during minimally
invasive surgery (MIS) that meets the surgeon’s expectation
and preference is an important factor in improving the
surgeon’s performance [15]. A screenshot of the optimal
laparoscope view is shown in Figure 1. A typical control
strategy to achieve an optimal view is to i) maintain a
certain size ratio between the tool and the background view
(hereby shortened as tool-view ratio) as a trade-off between
perspective and details [8], [10], [11], [12], [13] and ii) keep
the tooltip near the center of the view [10], [16].

A fully automated system would significantly reduce the
surgeon cognitive load, but comes with the potential hazard
introduced by the increased complexity of the novel system
and it would be less capable of dealing with complex or
unanticipated conditions. In our research, we only focuses
on the zoom ratio control as it give the surgeon physical
laparoscope control authority, but also shared their partial
workload. Tool-view ratio can be adjusted by changing the
distance between the laparoscope and the tooltip or tuning the
lens zoom factor. Acquiring information about the distance
between the laparoscope and the main tool from a monocular
lens is challenging. To estimate the camera-tool depth, either
sensors and markers [12], [8], [13], color band on the tool’s
shaft [10], [11], or neural networks [17], [14] are used.
Nishikawa et al [8] presented the commonly used distances
between the tooltip and the laparoscope of two camera
holding assistants in simulated surgery tasks using optical
markers. Rivas-Blanco et al [13] gave recommended zoom
factors for different stages in the simulation with no further
explanation, using the robotic system’s stored position data.
However, using additional accessories could be problematic
in real surgery considering sterilization and equipment setup.
On the other hand, neural networks-based methods can over-
come drawbacks of the accessories-dependent approaches.

Always keeping the tool at the central region can cause
frequent laparoscope position changes when the tool is
slightly off the center, thus making surgeons feel sick.
Therefore, using a wider central optimal region defined by
researchers [11] or based on collected data [17] to balance
the motion and view quality is adopted. Li et al [17] shows a
qualitative frequency heatmap of the optimal region in their
paper.

To the best of the authors’ knowledge, the common tool-
view size ratio (distance or zoom factor) and heatmap in real
surgeries have not yet been quantitatively identified.

Based on the literature review, the tooltip position with
respect to the laparoscope and the size ratio between the
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Fig. 1. Intraoperative photo [18] demonstrating target anatomy for chole-
cystectomy (gallbladder, cystic duct, cystic artery), and relevant adjacent
organs for orientation (liver, stomach). Tools’ mask contour is drawn on the
laparoscopic image using the green line, length and width are annotated as
well. The thick blue and red lines connect feature points.

tool and the background view are the two most critical
metrics to define an optimal view as they determine whether
a surgeon sees sufficient details and reduce unnecessary lens
movements. This research aims to develop a new framework
for automatic adjustment of the lens zoom factor according
to the tool-view size ratio (Figure 2) to work with any
manual interface, e.g., [19], [20]. The framework consists
of a perception and a control section, the perception section
uses the laparoscope image to estimate the tool’s geometric
features, which are then used as the input for the zoom
factor controller. At least four Degrees of Freedom (DoF):
Roll, Yaw, Pitch and Insertion/Withdrawal are required to
operate the laparoscope with the Remote Center of Motion
constraint. The zoom factor adjustment replaces the control
of insertion/withdrawal to achieve the optimal tool-view size
ratio.

In this paper, we describe and validate the perception com-
ponents of the framework. The proposed approach is tested
on the clipping and cutting stage of the Cholec80 dataset that
contains videos of 80 cholecystectomy surgeries performed
by 13 surgeons [18]. Cholecystectomy is the gallbladder
removal surgery, a relatively common and straightforward
procedure [21]. It’s main phases have been well-defined [18],
with the clipping and cutting stage identified as the most deli-
cate phase in the procedure [18]. Frequent zoom adjustments
make this stage suitable to study the human camera holder’s
preferable zoom operation pattern. The contributions of this
paper are:

• A perception algorithm that uses a neural network to
extract the tool’s geometric features to estimate the tool-
view size ratio for the zoom factor control without using
a color marker or sensor in contrast to [10], [11].

• The clipper and scissors’ common tool-view size ratio
and central optimal region in the clipping and cutting
phase of cholecystectomy [18] are quantitatively identi-
fied based on the Cholec80 dataset using the developed
perception block. This provides an initial insight into the
optimal zoom factor and central optimal region based
on real surgery data.

• A waiting zone is defined as the supplementary of the
optimal central region. When the tooltip is inside this

region, the laparoscope’s zoom factor is not adjusted.

Fig. 2. The flowchart of the proposed laparoscope control framework -
perception component.

II. METHODS

Our framework aims to develop a control system that only
manipulates the lens zoom factor. Thus, the tool-view ratio,
which is the representation of the zoom factor adjustment,
is the concern of our framework, rather than the depth
and absolute 3D position for fully automatic laparoscope
control [17].

In the perception section of the framework, tools such as
clipper and scissors in cholecystectomy are defined as the
main tool and tools like grasper that assist the operation
are defined as auxiliary tools. The proposed perception
algorithm uses the main tool’s binary mask to estimate the
tooltip position and geometric features. The binary masks
are produced by an instrument segmentation neural network,
while the tool geometric characteristics generator extracts
the correct main tool mask’s width (W ) and length (L)
(Figure 1). The width is defined as the distance between
the intersecting point of the tool body’s longer side and the
laparoscopic view’s edge (point E), and its symmetric point
across the tool’s longitudinal axis. The length is defined as
the distance from the tooltip to the width line. In the proposed
approach, the tool-view size ratio is characterized by L

W 2 ,
which is used by the controller to adjust the zoom factor.
This ratio is chosen because it exhibits a monotonically
decreasing relationship with the zooming operation, i.e., it
becomes smaller when zooming in and larger when zooming
out.

The relationship between the tool-view size ratio and zoom
factor is verified in simulations. Trocar placement for a
laparoscopic cholecystectomy (Figure 3(a)) was followed for
setting up the simulation experiment. As shown in Figure
3(b), the world frame and camera frame coincide at the lens
tip and the z axis is along the lens shaft pointing out. Since
the main tool is usually inserted from the right side, the range
for the distance a is between [0cm, 20cm], while the allowed
moving range for the distance b is between [-5cm, 5cm]. The
vertical distance range for c is between [0cm, 30cm] based
on the results in [8]. The tool first rotates γ degrees about
the tool’s y axis (shares the same orientation with the world
frame originally) with respect to the insertion point and then
rotates θ degrees about the tool’s rotated x axis with respect
to the insertion point to reach the final target. The range of
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(a) (b)

(c) (d)

Fig. 3. (a) Trocar placement for the laparoscopic cholecystectomy [22].
(b) Simulation setup paradigm. (c) Tooltip position in the view. (d) Size
ratio versus focal length.

γ is between [0, 90] and the range of θ is between [-90, 90].
Evaluated tip positions are shown in Figure 3(c) and almost
cover the whole view. The laparoscopic tool used in the
simulation has a 5 mm diameter. The selected laparoscopic
camera has a 1920*1080 pixel output signal, 300mm radius
laparoscopic view and focal length f = 15 − 31mm(2×).
The simulation randomly tested 20000 valid tool insertion
configurations (the tooltip is inside the view) and all size
ratios become smaller when zooming in and larger when
zooming out (Figure 3(d))

An optimal range of the tool-view size ratio is defined as
L

W 2 Mean
± L

W 2 SD
based on collected clinical data. L

W 2 Mean
gives the base value and L

W 2 SD
is the acceptable changing

range of the size ratio during operations. When the value of
L

W 2 is in this range, the zoom factor will be kept constant.
The use of L

W 2 considers both the tool’s size and shape,
and clearly identifies the insertion and operation process
(Figure 4). Only using the size data causes ambiguity as a
slender mask across the view and a larger mask near the edge
may have similar areas. Only relying on shape ( L

W ) makes
identifying masks difficult, since tools can have similar shape
but different sizes. Therefore, the zoom control could be
unexpectedly activated if L

W or area is deployed.

A. Instrument segmentation neural network

The segmentation neural network duplicates the OR-
UNet [23], which achieved excellent performance in the
Robust-MIS 2019 challenge [24]. The model was trained
by following the default settings from [23], but using 3-fold
cross-validation to achieve real time processing. An ensemble
that consists of the three trained models from the cross-
validation is used for inference. TensorRT [25] is used to
speed up the inference time to 20 fps processing rate on

Fig. 4. Screenshots of four operation frames. (a) is a scissors just inserted
into the view. (b) is a scissors close to the central region. (c) is a clipper
just inserted into the view. (d) is a clipper close to the central region.

a local PC with Nvidia 2070super GPU and Intel(R) Core
i7-10875H CPU.

B. Tool geometric characteristics generator

The characteristics generator is designed to extract the
width and length from a valid mask of the main tool. The
touched tools filter (Figure 2) is implemented to detect and
handle contact between the auxiliary and main tools. The
potential main tool mask will then be checked by the noise
filter and the bad-mask filter to make sure the neural network
correctly segments the tool.

Finally, the K-means algorithm is used to classify points
on the tool contour to get 12 feature points (green points in
Figure 1). The distance from the farthest feature point (point
F) to the width line will be identified as the tool length.
Two sets of two points (points A,B and points C,D) close
to the edge are connected to describe the main tool’s shape,
and the longitudinal symmetric axis is the bisector of the
angle formed by line segment AB and CD. The width is
calculated by using the intersection point from the longer
tool side (point E) and the symmetric axis.

III. RESULTS

The Cholec80 dataset is analysed to collect the tool-
view size ratio and tooltip heat map. The optimal size ratio
and the central optimal region are inferred using statistical
analysis. 13 videos from the dataset are eliminated due
to bad segmentation performance. An operation is defined
as the process starting immediately after the first zoom
operation until just before the tool starts withdrawing from
the operating site. In total 121 clipping operations (including
11 invalid data) and 95 cutting operations (including 4 invalid
data) were collected.

In the Cholec 80 dataset, the laparoscopic view size varies.
Therefore, the width and length are normalised with the
curved edge arc length and the circular view’s diameter in
pixel units respectively for normalised size ratio L

W 2 analysis.
The tip position coordinates are normalised with the view’s
radius.
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The Cholec80 dataset does not identify the surgeon (i.e.,
we do not know if the same surgeon performed one or more
of the operations), while patients are different in each case.
Although some analysed operations are from the same video,
we assume all collected operations are independent.

A. Framework performance

The instrument segmentation neural network mean Dice
score is 82.06 with 3-fold cross validation on the training
set (mean Dice score is 87.41 with 8-fold cross validation
in [23]). The tool geometric characteristics generator perfor-
mance depends heavily on segmented masks. The accuracy
of successful identification of length and width is 98.1%
tested with 2000 correctly segmented masks.

B. Optimal tool-view size ratio

To estimate the tool-view size ratio’s base value and
changing range, standard error (SE) is selected to calculate
the margin of error. The 95% confidence interval for the base
value of L

W 2 for the clipper and scissors are in the [0.057,
0.071] and [0.077, 0.099] ranges. The changing range of
L

W 2 for the clipper and scissors are in [0.0197, 0.0243] and
[0.0245, 0.0315] ranges. Histograms of the size ratio’s base
value and changing range in each operation are shown in
Figure 5.

Fig. 5. Histograms of clipper and scissors’ L
W2 base value and changing

range.

C. Optimal central region

The heatmaps are generated by using the scissors and
clipper tip coordinates collected by the perception section.
As can be seen from Figure 6, the most activated areas for
the clipper and scissors are slightly deviated to the right
and upper side of the circle origin, respectively. The most
activated region (defined as the area where the probability
is higher than 0.8) and the secondary most activated region
(defined as the area where the probability is higher than 0.5)
of the scissors can be enclosed by two circles located at the
center of the view with rinside = 0.23 and routside = 0.38.
The corresponding values for the clipper are rinside = 0.26
and routside = 0.4. The heatmap can be used as a reference
to control the laparoscope’s position. Absence of the main

tool from the activated region might express the surgeon’s
intention to change the operating site.

Fig. 6. Generated heatmaps in the clipping and cutting stage (a) is the
heatmap of the clipper in the central area. (b) is the heatmap of the scissors
in the central area. (c) is the heatmap of the clipper in the waiting zone. (d)
is the heatmap of the scissors in the waiting zone.

IV. DISCUSSION & CONCLUSION

This paper presents the perception section of our proposed
framework for automatic laparoscope zoom ratio control. The
perception part makes use of the symmetrical characteristics
of the tool’s shape to calculate the width and length. We
also present the clipper and scissors’ commonly used tool-
view size ratio range in the clipping and cutting stage
of cholecystectomy, and the recommended optimal central
region size for these two tools.

An interesting observation from the data is that except for
the central region, surgeons tend to keep the tool at the very
edge but not completely withdrawn from the view when they
pause and check the target site. After removing all points near
the secondary most activated region, the waiting zones for
clipper and scissor are shown in Figure 6. The waiting zone
should be considered when designing the optimal range, to
prevent false actuation while the surgeon checks the target
and then resumes the operation.

One challenge in using the collected common tool-view
size ratio and central region for laparoscope control is
to build the connection between the common value and
individual’s preference. One surgeon may prefer a wider
view while another surgeon may prefer a more detailed
view. The difference in L

W 2 base value and changing range
reflects the individual’s preference. Therefore, in the control
section development, the common range of L

W 2 will first be
tested to estimate it’s generality for surgeons, but could also
be adjusted to adapt to personal preference. This proposed
framework has the potential to be adapted to other types
of surgeries as long as the perception section could collect
enough data to define common moving range and optimal
region for all the main tools.

The next step is to analyse the remaining phases of
the cholecystectomy. As the current method uses a binary
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segmentation neural network, tracking the main tool in real-
time is not possible if the main tool is re-inserted from a
new position accompanied with other auxiliary tools. In the
future, the binary network will be replaced with multi-object
segmentation to achieve real-time main tool identification
and tracking. Therefore, the perception algorithm will only
process the main tool and ignore the other tools. If the main
tool is invisible in the laparoscopic view, the zoom factor will
hold still, and once the non-detected time becomes longer
than a threshold, the system will zoom out to try to search
for the main tool. Finally, the whole framework including the
control section will be completed, and we will test the real-
time performance of the proposed automation system and its
influence on the surgeon’s workload.
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