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Abstract— Progression-free survival (PFS) prediction using
computed tomography (CT) images is important for treatment
planning in lung cancer. However, the generalization ability of
current analysis methods is usually affected by the scanning
parameters of CT images, such as slice thickness and recon-
struction Kernel. In this paper, we proposed a generative ad-
versarial network (GAN)-based model to convert heterogenous
CT images into standardized CT images with uniform slice
thickness and reconstruction kernel to increase the generaliza-
tion of the predictive model. This model was trained in 173
patients with multiple CT sequences including both thin/thick
voxel-spacing and sharp/soft reconstruction kernel. Afterward,
we built a 3D-CNN model to predict the individualized 1-
year PFS of lung cancer using the standardized CT images
in 281 patients. Finally, we evaluated the predictive model by
5-fold cross-validation and the mean area under the receiver
operating characteristic curve (AUC). After transforming to
the heterogenous CT images into the uniform thin-spacing and
sharp kernel CT images, the AUC value of the 3D-CNN model
improved from 0.614 to 0.686. Furthermore, this model can
stratify the patients into high-risk and low-risk groups, where
patients in these two groups showed significant difference in
PFS (P < 0.001).

I. INTRODUCTION

Lung cancer remains the deadliest cancer worldwide with
only 10% ~ 20% 5-year survival rate. According to the
American Cancer Society’s report, the lung cancer death
rate has declined by almost one-half from 2014 to 2018
[1]. One of the contributors is the great progress in treat-
ment regimens, such as molecularly targeted therapy. The
molecular-targeted agents have shown potential in prolonging
patients’ progression-free survival (PFS). However, some
patients emerged drug resistance after a period of targeted
cancer therapy [2]. Therefore, early assessment of PFS with
regard to targeted therapy is crucial for treatment adaptations.
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In clinical practice, computed tomography (CT) is widely
used for lung cancer diagnosis and treatment monitor. Pre-
vious studies have shown that CT texture features are as-
sociated with PFS of lung cancer [3]. However, various CT
protocols have a great impact on the CT images and limit
the further generalization of related research [4]. In terms of
CT protocols, slice thickness and reconstruction kernel are
very important, since they can affect the spatial resolution
and noise pattern of the CT images.

Recently, Generative Adversarial Networks (GANs) have
shown great potential in transforming medial images to solve
some clinical problems, such as using synthetic images to
improve liver lesion classification [5] and to enhance liver
tumor detection [6]. Inspired by the related works, we aimed
to use CycleGAN to generate CT images with uniform slice
thickness and reconstruction kernel. Afterward, we proposed
a 3D-CNN model to predict 1-year PFS of lung cancer after
receiving targeted therapy. Finally, we compared the perfor-
mance improvement of the model using uniform synthetic
CT images over the model using non-uniform original CT
images. Furthermore, we assessed the prognostic ability of
our model regarding PFS by the Kaplan-Meier method.

In this paper, Section II presents our method to generate
uniform CT images and the comparison between our method
with interpolation in predicting 1-year PFS of lung cancer
patients. Section III focuses on experimental details and
results, Section IV shows the conclusion.

II. METHOD

Our method included: 1) CycleGAN-based image trans-
formation, and 2) 3D-CNN-based 1-year PFS prediction.
The image transformation phase aimed at standardizing the
heterogeneous CT images into CT images of uniform slice
spacing and reconstruction kernel. We trained two Cycle-
GAN, one was used to transform 5-mm soft kernel images
to 1-mm sharp kernel images, and the other was used to
transform 5-mm sharp kernel images to 1-mm sharp kernel
images. Afterward, we used uniformized 1-mm sharp kernel
images (synthetic images + original images) to predict the
1-year PFS of lung cancer by 3D-CNN model. The workflow
is shown in Fig.1.

A. Uniform CT images synthesis

In order to fit the following 3D-CNN model, we used
bicubic interpolation to standardize all CT images into 240
x 360 x 48 before image generation. After that, we built a
CycleGAN to convert CT images from the 5-mm sharp/soft
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kernel images to 1-mm sharp kernel images. The architec-
ture is shown in Fig.2. The generator was a ResNet-like
architecture. The first three convolutional layers included 64,
128, and 256 filters with stride 7, 3, and 3, respectively.
Between each convolutional layer, we used instance nor-
malization layers with LeakyReLU activation function. Then
the network was connected with nine residual blocks. Each
residual block included two convolutional layers and instance
normalization layers with LeakyReLU activation function. In
the last convolutional layer, we used tanh activation function
to restrict the output image values between [-1,1].

In the discriminator, the first four convolutional layers
including 64, 128, 256, and 512 filters were used to learn
the image features, and the last convolutional layer with
1 filter was used to calculate the output. Between each
convolutional layer, we used instance normalization layers
with LeakyReLU activation function. We combined every
three adjacent image slices to form a 3-channel input size
(240 x 360 x 3) to train the model.

B. Progression-free survival analysis

After training the CycleGAN model in Dataset 1, we
applied the model to Dataset 2 to transform 5-mm sharp/soft
kernel images to 1-mm and sharp kernel CT images. Then
we combined the original 1-mm sharp kernel images from
Dataset 1 with the synthetic 1-mm sharp kernel images from
Dataset 2 to predict 1-year PFS by building a 3D-CNN
model. The architecture of the model was similar to 3D-
ResNet18. We added a convolutional layer in the branch of
the second to the fourth residual blocks. The input size was
240 x 360 x 48, and other detail parameters are shown in
Table 1. In Table I, N means the number of filters, k means
kernel size, and s means stride size.

To avoid over-fitting, we augmented the training samples
on the fly during the training process by rotating a random
angle between 0 and 10, translating a random shift between
-15 and 15 voxels in each axis, flipping randomly.

The workflow of the study.

TABLE I
PARAMETERS OF THE 3D-CNN MODEL

Layers Output size | Parameters
. 64 @ 120
Convolution % 180 x 24 64N, k7s2
Max 64 @ 60 x .
pooling 90 x 12 window2, s2
Convl: 64N, k3sl
Residual 64 @ 60 x | Conv2: 64N, k3sl1, concatenation
block 1 90 x 24 Conv3: 64N, k3s1
Conv4: 64N, k3sl, concatenation
Conv5: 128N, k3s2
. Conv6: 128N, k3sl1, concatenation
leeblEu; 1 >1<2§5 E(q) 630 Conv7: 128N, k3s2, concatenation
¢ Conv8: 128N, k3sl
Conv9: 128N, k3s1, concatenation
Conv10: 256N, k3s2
Residual 256 @ 15 Convl 1 256N, k3s1, concatenaqon
block 3 %23 x 3 Conv12: 256N, k3s2, concatenation
0cK - Conv13: 256N, k3sl
Conv14: 256N, k3s1, concatenation
Conv15: 512N, k3s2
. Conv16: 512N, k3s1, concatenation
leem;(iujl sz@; 8 x Conv17: 512N, k3s2, concatenation
¢ Conv18: 512N, k3s1
Conv19: 512N, k3s1, concatenation
Global aver- | <5
age pooling
Fully 1 Sigmoid, L2 regularization
connected g ? g

III. EXPERIMENTS AND RESULTS
A. Dataset

A total of 281 advanced lung cancer patients from West
China Hospital of Sichuan University from 2009 to 2012
were enrolled in this study under the approval of the in-
stitutional review boards. All patients were treated with
molecularly targeted agents, such as Gefitinib, Erlotinib,
and Icotinib. After targeted cancer therapy, all patients were
followed up for at least 1 year. The ground truth in this
study is 1-year PFS. The PFS was measured from the time
of therapy to the time of progression or recurrence. At the

3412



Input CT images

5-mm soft kernel

128@120x180
256@60%90

A\

[} S 3
F N X 2
S ©)
= -
& N
S &
©|
¢ X
YT
240x360%3
Fig. 2.

last follow-up, 132 patients recurred within one year, 149
patients did not recur within one year.

Every patient underwent chest CT scans by using Siemens
SOMATOM Definition AS scanner. The acquisition parame-
ters were as followings: tube voltage = 120 kV, tube current
= 200 mAs, rotation time = (0.7 s, matrix = 512 x 512,
and intervals = 0.75 mm. The reconstruction kernels had the
following two types :1) sharp kernel (B60f and B80f), and
2) soft kernel (B30f and B31f). The slice thickness was 1
mm or 5 mm. Note that all thin-spacing images (1-mm slice
thickness) only had the sharp reconstruction kernel.

In Dataset 1, 174 patients had both 1-mm sharp kernel
images, 5-mm sharp kernel images and 5-mm soft kernel
images. In Dataset 2, 108 patients only had 5-mm sharp or
soft kernel images.

B. Data preprocessing

Firstly, we clipped the voxel intensity to [-1000, 400],
and then normalized into [-1, 1). Afterward, we built an
FPN model with DenseNetl21 backbone to get a lung
volume mask. The training details can be found in our
previous studies [7]. After training for 40 epochs, we applied
the DenseNet121-FPN model for lung segmentation in CT
images. The cubic bounding box of the segmented lung area
was cropped and resized into 240 x 360 x 48 voxel size for
further analysis.

All networks were implemented by Python 3.7 and Keras
2.2 with TensorFlow 2.3 backend and trained on the machine
with NVIDIA TITAN X GPU.

C. Synthesize uniform CT images

We used Dataset 1, which contained 174 patients with
8352 training images to train the CycleGAN to convert 5-
mm soft/sharp kernel images to 1-mm sharp kernel images.
We used mean-squared error (MSE) as the adversarial loss,
mean absolute error (MAE) as the cycle consistency loss
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The architecture of proposed CycleGAN model.

and identity loss, Adam optimizer with a fix learning rate
of 0.0002, and batch size of 5 for training. To measure
the image quality, peak signal-to-noise ratio (PSNR) and
mean-squared error (MSE) were used. The evaluation results
between the synthetic and original 1-mm sharp kernel images
are shown in Table II, and the sample results of synthetic
images are shown in Fig.3. The results exhibited that using
5-mm soft kernel images had a slightly better image quality
than using 5-mm sharp kernel images to convert 1-mm sharp
kernel images.

TABLE I
EVALUATION SIMILARITY BETWEEN GENERATED AND
REAL 1-MM SHARP KERNEL IMAGES

Images MSE PSNR
mean | sd mean | sd

Synthetic 1-mm sharp kernel im-

ages generated from 5-mm soft | 0.03 0.01 | 19.87 | 1.44

kernel images

Synthetic 1-mm sharp kernel im-

ages generated from 5-mm sharp | 0.04 0.01 | 18.89 | 1.71

kernel images

D. Progression-free survival analysis

We combined Dataset 1 and 2 (281 patients) to train the
3D-CNN model to predict 1-year PFS. In Dataset 1, we
used original 1-mm sharp kernel images, and in Dataset 2,
we compared the models using the original 5-mm soft/sharp
kernel images with the synthetic 1-mm sharp kernel images.
We used 5-fold cross-validation to evaluate the model perfor-
mance and calculated the mean area under the receiver oper-
ating characteristic curve (AUC) and mean accuracy (ACC)
to assess the PFS prediction of the model. We used kaiming
initialization with normal distribution ("he normal’) method
to initialize the parameters in the model. Adam optimizer
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Fig. 3. The sample results of the image transformation.

with an initial learning rate of 0.0001 and exponential decay
was used to train the model for up to 50 epochs. Due to the
GPU memory limitation, the batch size was set to 2. The
results are shown in Table III. The model using the original
heterogenous CT images (1-mm sharp kernel images mixed
with original 5-mm soft/sharp kernel images) yielded AUC
around 0.61 and ACC around 0.60. When transforming the
heterogenous CT images into uniform 1-mm sharp kernel
images, the model performance was improved, AUC range
from 0.671 to 0.686. These results illustrated that using CT
images of uniform slice thickness and reconstruction kernel
achieved better performance than directly using heterogenous
CT images with various slice thickness and reconstruction
kernels.

To further explore the prognostic ability of our model, we
assessed the 3D-CNN model (original 1-mm sharp images
and synthetic 1-mm sharp kernel images transformed from
5-mm soft kernel images) with regard to PFS by the Kaplan-
Meier method. This model successfully stratified the patients
into high-risk and low-risk groups using the median predicted
value of all patients (Fig.4). The PFS between the two
groups is significantly different (P <0.001). This result
indicated that our 3D-CNN model had a good prognostic
value of identifying lung cancer patients who have high-risk
of progression after receiving molecularly targeted therapy.

IV. CONCLUSION

In this paper, we proposed a CycleGAN-based model to
convert heterogenous CT images into uniform CT images
with the same slice thickness (1 mm) and reconstruction
kernel (sharp kernel). Afterward, we compared the prognostic
model using the synthetic unified CT images with the model
using heterogenous CT images to predict 1-year PFS of lung
cancer. We built a 3D-CNN model to predict the individu-
alized progression. Our results suggested that transforming
the 5S-mm CT images with various reconstruction kernels
into identical CT images with 1-mm slice thickness and
sharp reconstruction kernel can improve the performance of
predicting PFS. Furthermore, we investigated the prognostic
ability of our model by Kaplan-Meier method. The results
illustrated that our 3D-CNN model can significantly stratify

TABLE III
RESULTS OF 1-YEAR PFS PREDICTION

Input images AUC ACC
mean | sd mean | sd

original I-mm sharp kernel im-

ages + original 5-mm soft kernel | 0.614 | 0.05 | 0.595 | 0.03

images®

original 1-mm sharp kernel im-

ages+ original 5-mm sharp kernel | 0.628 | 0.04 | 0.607 | 0.02

images®
original 1-mm sharp kernel im-

ages + synthetic 1-mm sharp kernel | 0.671 | 0.06 | 0.644 | 0.05
imagesP

original 1-mm sharp kernel im-

ages + synthetic 1-mm sharp kernel | 0.686 | 0.05 | 0.660 | 0.03

images®

astandardized by interpolation;Pgenerated from 5-mm sharp kernel
images;°generated from 5-mm soft kernel images.

advanced lung cancer patients treated with molecularly tar-
geted treatment into high/low-risk groups. For the high-risk
patients, they are more resistant to the molecularly targeted
therapy need more intervention in an early phase.
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Fig. 4. The Kaplan-Meier curves of the 3D-CNN model.
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