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Efficient Point-Process Modeling of Spiking Neurons for Neuroprosthesis
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Abstract— Neuroprosthesis refers to implantable medical de-
vices which can replace injured biological functions in the
brain. One of the core problems in neuroprosthesis study is
to construct a neural signal transformation model from one
cortical area to another. Since the brain encodes and transmits
information in spike trains, spiking neural network (SNN) can
be an ideal choice for neuroprosthesis modeling. This paper
proposes a spiking neuron point-process model (SNPM), which
receives spike times as input, and is capable of modeling
nonlinear interactions between cortical areas. The proposed
SNPM can be implemented on neuromorphic chips for low-
energy computing, thus has potential for clinical applications.
Experiments show that SNPM can accurately reconstruct func-
tional relationships from PMd (dorsal premotor cortex) to M1
(primary motor cortex) areas.

I. INTRODUCTION

Different functional areas in our brain communicate with
each other by synaptic connections, but injures of these
connections could cut off the transregional brain commu-
nication and lead to cognitive functional losses. One possible
solution to repair such losses is to design a neuroprosthesis,
which relinks the damaged connections by modeling the spike
transformation of neural populations [1] [2].

An optimal neuroprosthesis should have the following
properties: (1) It should take spike times as its inputs to
best preserve the information in spike trains [3]; (2) It should
be computationally efficient so as to meet the stringent power
budget of the intracranial implantation; (3) It should be
biologically plausible from the perspective of the brain.

Considering these properties, spiking neural network (SNN)
can be a primary candidate. SNN not only guarantees
biologically plausible, but also allows efficient temporal
information coding and promises considerable computing
power savings with neuromorphic chips [4] [5] [6].
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Efforts have been made in modeling the transformation
between the brain areas. Song et al. [1] proposed a com-
putation model to capture the nonlinearity transformation
from hippocampal CA3 to CA1, and achieved high prediction
accuracy on modeling the CA1l output spike distribution
based on CA3 input spike trains. However, the estimation
of this model becomes computationally complex when the
size of input data increases. They [7] then developed a
sparse model coefficients representation to optimize the
estimation with large-scale binned spike trains. Qian et al.
[8] proposed a staged point-process model (SPM), which
can theoretically approximate arbitrary spike transformation
nonlinearity. Compared with Song’s model, SPM requires less
parameters to estimate, however, it needs to take several times
of re-training to obtain the best parameter initialization, thus
still has low computational efficiency. From the perspective of
neuroprosthesis with SNN, Dethier et al. [9] designed a SNN
based Kalman decoder on ultra-low power neuromorphic
chips, which decodes spike trains from motor brain regions
to control signals for a prosthetic arm. Nevertheless, this
decoder receives spike rates calculated in 50ms bin width,
which may affect accuracy due to missing details of temporal
information.

In this work, we propose a spiking neuron point-process to
capture the nonlinearity of spike transformation. Specifically,
we construct a SNN version of staged point-process model
(SPM), which receives historical spike times rather than
binned spike train as inputs. In doing so, our biologically
plausible model could have a more stable performance on
parameters estimation than original SPM [8], and prevents
lossy compression of binned spike train as well as reducing
massive heat dissipation on specialized hardware.

We evaluate the spiking neuron point-process model
(SNPM) with both synthetic nonlinear spike data and real
neuron data from PMd (dorsal premotor cortex) to Ml
(primary motor cortex). Our approach is evaluated and
compared with the original SPM, generalized Laguerre
Volterra model (GLVM) [7] and generalized linear model
(GLM) [10]. The rest of this paper is organized as follows:
section II describes the methods of the whole neural point-
process model, section III introduces the results of SNPM,
and section IV presents the conclusion and future work.

II. METHODS

The methods consist of two parts. First of all, we illustrate
the preprocessing of recorded spike train. After that, we
describe the steps and theoretical analysis of the conversion
from SPM to SNPM. The overall framework of spiking neuron
point-process model (SNPM) is shown in Figure 1.
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A. Spike Train Preprocessing

Spike train is a type of events that occur in the domain
of continuous time, where information is encoded by the
firing times of action potential. Currently, most decoding or
computation models discretize the point-process of spike train
[10], and set ”1” to the given discrete time interval if there
exists spikes, otherwise set *0’, which means nothing happens.
However, such binarization may lead to lossy compression.
Consider a discrete time interval with large time width, there
is a chance that multiple spikes exist in this interval. That is,
spike train may degrade to spike firing rate, thus the details
will be lost. On the other hand, a discrete time interval with
small time width also causes temporal jitter [3] and brings
high computational complexity to the model due to the high
dimensional spike data.

Spike Train Preprocessing Historical Firing Times
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Fig. 1. The framework of spiking neuron point-process model (SNPM).
We directly obtain spike times by preprocessing recorded PMd spike trains.
Then we use a two-stage spiking neuron point-process to predict the firing
probability of output M1 neurons. Finally, we generate output spike trains
based on predicted firing probabilities.

An alternative approach is to take firing times as inputs,
since those time intervals with no spikes usually encode little
information, which instead almost exists in the spike firing
times [3] [11]. Given the time point ¢, let y* denotes the
spike train of output neuron at time ¢ and (71, ..., 7h, ..., T¢)
be the input historical firing times with 73, represents the time
interval between firing time ¢;, and previous firing time ¢;,_1,
our goal is to model the output neuron’s firing probability
Pré and the final output spike train ' is generated by setting
a threshold on Pr.

Technically, the output spike y® is determined by all
previous historical firing times since spiking neuron point-
process model considers the output neuron train as a point-
process. However, each spike event at different time point
obviously has unequal influence on the current output spike.
Given this insight, we use exponential decay to capturing the
temporal evolution, which is similar to a postsynaptic current
generated by synaptic models

xt :exp(—i(ﬁ’m’m)) ()
!
where z! is the input history spike times and o = 100 denotes

the decay parameter.

B. Spiking Neuron Point-Process

The approach to construct a spiking neuron point-process
is taking the parameters of a pre-trained staged point-process
model (SPM) and mapping them to an equivalent spiking
neural network (SNN) as well as converting all the neurons
in SPM to spiking neurons. In dong so, our model is
more biologically plausible considering this spikes-in/out
application with temporal coding scheme.

Besides, previous study with TrueNorth [12] indicate that
a power dissipation of only a few hundred mW is achieved
with more than a million neurons implemented, which also
implies our model’s ability to low-energy computing on these
neuromorphic platforms.

We start by giving a brief view of SPM [8]. SPM can be
considered as a cascade structure with two linear-nonlinear
(a linear combination plus a static nonlinear function) stages
and an inhomogeneous Bernoulli process, which follows
the idea of two-stages ANN and allows arbitrary nonlinear
mapping between the spike of input neurons and output
neuron [13]. Using statistical learning theory under the point-
process framework, we can probabilistically derive the staged
point-process model

N H

first stage: M = O'(Z Z x?WZJh + W)
i=1 h=1
. (2)

second stage: Pry, = f() 0, + )
Jj=1

where A, and Pr,, are the firing probability of hidden neurons
and output neuron, and o () represents the ReLU activation
function as well as f() denotes the softmax function.

To properly estimate parameters W7, , W, 6, and 6,, we
choose cross-entropy loss L = — 3 ) Prlog(Pry) as the
log-likelihood function, and use scaled conjugate gradient
algorithm [14] to maximize it. Since current SPM receives
historical firing times instead of binary spike values as inputs,
the optimization surface of log-likelihood function becomes
smoother [15] and the training has a more stable performance
on different initial parameters settings than original SPM.
That is, a higher computational efficiency is achieved when
it comes to real application of an implanted neuroprosthesis.

After obtaining a pre-trained SPM, the problem becomes
how to guarantee the firing of spiking neurons should exactly
match the activation of SPM’s neurons. Our core idea is
followed by [16] where a link between the transfer function
of a integrate-and-fire (IF) spiking neuron to the activation
of ReLU is established.

Considering a two-layer SNN, every IF spiking neuron
has a membrane potential V(¢), which integrates its input
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current at each time point. Once V' (t) reaches threshold Vi,
a spike will be generated and the value of V! (t) will be reset
to zero. Meanwhile, note that if given the time steps 7', we
can calculate the firing rate of each IF spiking neuron ¢ as
rh(t) = (32—, HL(t))/t, where H!(t) is the Heaviside step
function representing the producing of a spike at time t.

As in [17], there exists a relationship between the firing
rate 7} (t) of first layer’s neurons in SNN and the activation
a} of the hidden units in SPM

ri(t) = Vi Vi(®) (3)
! CAtVip el (Vi +€})
where € is the exceeding amount of ith neuron’s membrane
potential when producing a spike and At denotes the time
interval size among 1" time steps.

Based on equation (3), it’s clear that the firing rate is
proportional to the hidden units’ activation, but reduced by
an additive error term. That is, we can approximate ReLU’s
activation by accumulating spikes over all time steps and
ReLU itself can be viewed as a firing rate approximation of
an IF spiking neuron model without refractory period.

Additionally, in order to avoid approximation errors of
too high or too low firing, weight normalization [18] is also
introduced. Given all possible activations that may occur
as an input to the next layer, we scale all the weights by
the maximum possible input. Denoting the scale factor as
the max sum of weights from last lalyer’s neurons among
all current layer s neurons ! = mazY 1(2?’:1 mao:(wéj)),
then weights w! and biases b' are normalized to w! = w!/pu!
and b! = b'/pl.

In summary, the steps for converting staged point-process
model to spiking neuron point-process are as follows

o Directly map the weights from the staged point-process
model to a spiking neuron point-process with IF neurons.

o Find a reasonable time steps 7" to approximate ReLU’s
activation.

o Use weight normalization to obtain better accuracy and
faster convergence.

III. RESULTS

We evaluate our model on synthetic nonlinear spike data
and real neural data recorded from PMd to M1 cortex. We
compare to staged point-process model (SPM), generalized La-
guerre Volterra model (GLVM) and generalized linear model
(GLM). We measure the ability of nonlinearity modeling by
DTR-KS test.

A. Assessing Goodness-of-Fit

The goodness-of-fit is defined by the DTR-KS [19], where
the maximal distance (denoted by D) between the DTR-KS
curve and the 45° line is calculated for model evaluation. In
order to evaluate the general spike prediction performance
across different output neurons, the 95% confidence bound is
considered and the distance-bound ratio (DBR) is given by

D

where Cjpix is the actual spike count of the given output
spike observation. The lower the DBR is, the better perfor-
mance the model has.

B. Performance with Synthetic Spike Data

First of all, the spike probability of input synthetic spike
data is defined as a sinusoidal function p* = aysin(B,t*) +
Y1, where a3 = 0.3, f; = 0.01 are the amplitude and
the frequency of the sinusoidal function, with v; = 0.3 be
the background firing probability. Binned input and output
spike are generated as a Bernoulli random variable with the
probability p¥.

Next, as for the nonlinear output spike train, we use a
sinusoidal function g() to convert the input spike probability
into output spike probability, since it cannot be fully approx-
imated by the superposition of the lower ordered polynomial
functions: p¥ = g(pk) = assin(Bopl + 42) + 6, where
ag = 0.25 denotes amplitude, B3 = 15.71 and v, = —1.571
come together to determine the frequency of interactions that
arise from different input signals, with § = 0.25 refers to the
background spike probability. An example of synthetic inputs
and outputs is shown in Figure 2.

Synthetic input spike train and probability
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Fig. 2. (a) and (b) are the synthetic input and output spike trains as well
as spike probabilities

The training, validation and test set each makes up 60%,
10% and 30% of synthetic spike data and we tune all models
on the validation set. As for SNPM, the number of input
historical firing times are 20, and for the rest of three models,
the length of input binary spikes is all set to 20. Besides, the
number of hidden units in SNPM and SPM are also both set
to 20.

To analyze the behaviour of the models, Figure 3 indicates
the prediction results of four models (SNPM, SPM, GLM
and GLVM) on test synthetic data, where black curve in
the background is the output spike probability of nonlinear
transformation. As a result, SPM and SNPM both match the
three peaks of synthetic output probability, while GLM and
GLVM fail to cover the left and right peaks.

C. Performance with cortical signals

We use a real spike train data recorded from PMd to M1
cortex area of a rhesus macaque monkey in a behavioral
experiment. The monkey was trained to control a joystick
and perform a four-direction center-out task. Raw neural
data were recorded by a Cerebus Data Acquisition System
(Blackrock Mi crosystems, Salt Lake City, UT, U.S.A.) with
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Fig. 3. Predicted firing trains and probability of SNPM, SPM, GLVM and
GLM with synthetic output spike probability as the background.

a sampling rate of 30 kHz. The bin size of the spike train was
set to be 10 msec such that most intervals will have just one
spike [20]. The animal-handling procedures were approved
by the Animal Care Committee at Zhejiang University, China,
abiding strictly by the Guide for Care and Use of Laboratory
Animals (China Ministry of Health). Further details of this
data can be found in [20] [21]. Since not all recorded neural
activities are related to the movement task [21], spike trains
from 54 M1 neurons and their corresponding top 10 PMd
neurons are used in this study.

The settings for SNPM and SPM are the same as section
II-B, but we choose 6 previous historical firing times as
inputs. The predicted spike probabilities of 19;;, M1 neuron’s
test data for four models are shown in Figure 4, compared
with the actual M1 spike. To give a clear view of predicted
probability, the results are smoothed by a normalized Gaussian
kernel, and we can see both GLM and GLVM do not match
the actual spike rate at all, while SPM and SNPM partially
predict the actual spike times.
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Fig. 4. Comparison of the predicted firing probabilities on the 19,5, M1
neuron and its actual spike.

Furthermore, we aim to assess the goodness-of-fit. We first
propose visualizations of the results of DTR-KS test on both
synthetic data and 19;, M1 neuron with the DTR-KS curve

within the 95% confidence bounds in Figure 5 (other M1
neurons have different 95% confidence bounds, so their DTR-
KS curve cannot be averaged and presented in one figure).
The averaged DBRs of four models on two types of data are
shown in Table 1.

According to Figure 5, we can see that, for both synthetic
and real neuron’s test data, the DTR-KS curve of the SNPM
is close to the 45° black solid line, which further validates
that the SNPM statistically models the nonlinear spike
transformation well.

GLM  ———SPM ——GIM  ——SPM

GLVM SNPM| 7 9 GLVM SNPM

0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09

Synthetic Data 19" M1 Neuron

Fig. 5.
test data.

DTR-KS plots for synthetic test data and the 19,5, M1 neuron’s

Table 1 presents the DBR of the GLM, GLVM, SPM
and SNMP on two types of data, where the DBR of real
neural data is averaged on all 54 M1 neurons. The results
indicate that the DBR of SNPM is much lower than those
of GLVM and GLM, and a little bit lower than those of
the SPM, which is caused by SPM’s unstable performance
on parameter setting (local minimum). Thus, SNPM has the
most stable performance over SPM with respect to parameter
initialisation, and achieves the better goodness-of-fit over
GLVM and GLM on modeling nonlinear dynamics.

TABLE I
DISTANCE-BOUND RATIO (DBR) OF FOUR MODELS ON PREDICTED
SPIKES
SNPM SPM GLVM GLM
Synthetic Data | 0.89+0.10 | 0.92+0.14 | 1.5940.11 | 1.9040.06
Real Data 1.1140.32 | 1.22+0.38 | 1.3640.55 | 1.39+0.57

IV. CONCLUSIONS

A real-time application of neuroprosthesis not only requires
a accurate nonlinear transformation model but also meets the
strict power constraints. The predicted spikes on simulated
data and real data both indicate that our spiking neuron point-
process is a promising spike train transformation modeling
approach for real applications of neuroprosthesis. In the future,
the ability to allow online learning of our model is deserved
to be explored.
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