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Abstract— Electrocardiogram (ECG) signals convey immense
information that, when properly processed, can be used to
diagnose various health conditions including arrhythmia and
heart failure. Deep learning algorithms have been successfully
applied to medical diagnosis, but existing methods heavily rely
on abundant high-quality annotations which are expensive. Self-
supervised learning (SSL) circumvents this annotation cost by
pre-training deep neural networks (DNNs) on auxiliary tasks
that do not require manual annotation. Despite its imminent
need, SSL applications to ECG classification remain under-
explored. In this work, we propose an SSL algorithm based
on ECG delineation and show its effectiveness for arrhythmia
classification. Our experiments demonstrate not only how the
proposed algorithm enhances the DNN’s performance across
various datasets and fractions of labeled data, but also how
features learnt via pre-training on one dataset can be trans-
ferred when fine-tuned on a different dataset.

Index Terms— Electrocardiography, arrhythmia classifica-
tion, self-supervised learning

I. INTRODUCTION

Electrocardiogram (ECG) signals are recordings of the
heart activity, and a primary inspection step in diagnosing
cardiovascular diseases including heart failure prediction
involves analyzing ECG signals. Modern deep learning (DL)
algorithms have applied convolutional and/or recurrent net-
work architectures to classify short segments of ECG signals
collected offline [1], [2], [3], [4], [5], but much of their
success can be attributed to massive amounts of labeled data
used for training. Constructing such a rich annotated dataset
is extremely expensive, and this training set acquisition cost
is an immediate hurdle that must be overcome for DL to be
applied to medical diagnosis.

To alleviate the annotation costs associated with DL, self-
supervised learning (SSL) algorithms have been devised
to leverage unlabeled data. SSL pre-trains a network on
auxiliary tasks to learn features relevant to the downstream
task, and has emerged as a crucial component when DNNs
are trained on difficult tasks with insufficient labeled data
[6], [7], [8], [9]. While SSL algorithms are often evaluated
on tasks with few labeled but abundant unlabeled data, even
acquiring large amounts of unlabeled data is infeasible for
medical modalities, and general-purpose SSL techniques may
not be able to achieve as high of an accuracy on such difficult
tasks. Moreover, most SSL applications are limited to natural
image classification and language processing, and algorithms
specific to ECG classification are absent up to date.
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Fig. 1. Schematic diagram for pre-training and fine-tuning.

In this work, we investigate whether known clinical fea-
tures based on ECG delineation can be used for SSL pre-
training to reinforce DNNs in detecting arrhythmia. Our
experiments demonstrate how learning key-features in ECG
signals before performing classification can consistently en-
hance the performance of DNNs. The proposed algorithm
is shown to outperform all general-purpose SSL baseline al-
gorithms, confirming that domain-specific knowledge should
be incorporated when available. Furthermore, we show how
semantics learnt from one dataset can be transferred to other
datasets which is clinically invaluable to deploy DL-based
algorithms to practical clinical settings.

II. METHOD

A. Electrocardiogram Delineation

Electrocardiogram delineation describes ECG signals as a
collection of critical features including heart rate and inter-
vals in the QRS complex which is the exemplar waveform
of ECG signals. In designing an SSL algorithm for ECG
classification, we adopted two ECG delineation algorithms to
extract interval-based [10] and axis-based features [11]. The
heart rate, QRS duration, PR-interval, QT-interval, and QT-
corrected features are extracted by detecting the QRS com-
plex, searching over scales of maximum modulus lines [12],
and identifying the onset and offset of the QRS characterized
by its first and last significant slopes. Because the slopes and
critical points occur at different time instances within the
cardiac cycle, both operations are performed in the wavelet
domain spanned by quadratic spline basis functions [13]. The
P and T wave detection and delineation algorithm follows
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from the window-based thresholding in [10]. Based on the
QRS complex and P&T waves obtained above, the electrical
axes were computed using leads I and III as in the method
developed by [11] with the net voltage obtained as follows.
The QRS net voltage was computed by subtracting the Q
and S amplitudes from the R peak, and the net voltages of P
and T waves were determined by measuring the difference
between the onset and peak amplitudes.

B. Self-Supervised Learning

The ECG delineation described above has been used as
a dimension reduction technique using the derived features
to classify cardiac abnormalities using traditional machine
learning [14] and DL algorithms [15]. ECG delineation has
been used in combination with other high-level features
extracted using convolutional neural networks (CNNs) in the
latter work. Here, we propose an approach to learn the above
features before fine-tuning for arrhythmia detection.

Fig. I illustrates the overall procedure. All 5 interval and
3 axes features are associated with L (# leads) and N
(# time steps) dimensional vectors, respectively. Each kth

feature zk ∈ Zk is classified as normal N (Zk) and abnormal
subjects using a standard reference [16]. The features’ mean
µ and diagonal variance matrix Σ are computed, and a
DNN is decomposed into a feature extraction module f
preceding regression g = (g1, . . . , gK) and classification
h = (h1, . . . , hK) fully-connected (FC) layers. Our SSL
algorithm then trains the DNN using a regression and clas-
sification (cross-entropy) loss:

g∗, h∗ = arg min
g,h

α
∥∥g (f(x))− Σ−1 (z − µ)

∥∥2
2

+ (1− α)H (1 {z ∈ N (Z)} , h(f(x))) (1)

where the former mean-squared error (MSE) loss aligns
the DNN’s latent space Z = ⊗K

k=1Zk induced by ECG
signals to clinically-relevant features and the classification
loss guides the network to identify normal and abnormal
features (in contrast to the subject’s condition of arrhythmia
or normal). After training until convergence, the DNN is fine-
tuned to classify arrhythmia using the ECG signals with true
annotations indicating the subject’s condition.

A preliminary experiment showed how inaccurately ex-
tracted features deteriorate the downstream classification
task, and we processed the features to filter out noise.
First, the sample-wise standard deviation σ̂k was computed

for each feature zk ∈ Rdk with dk = NL for interval
and dk = N for axis features. Any loss values computed
over features whose standard deviation σ̂k exceeded some
threshold, found via hyperparameter search, were masked
to avoid abrupt gradient changes or noisy targets. Next, the
features were smoothed by replacing the raw vectors zk with
its median, resulting in scalar-valued features Zk ⊂ R,∀k.

Initialization has played a key-role in modern DL, where
proper initialization is now necessary to avoid gradient
explosion/vanishing [17] or transfer learning is employed
when the downstream task lacks training samples. Recent
studies revealed how ImageNet pre-training may simply
speed up the rate of convergence [18], limiting its applica-
bility to non-natural image modalities which have drastically
different features. In contrast, the auxiliary task described
above initializes a network such that it can extract domain-
specific features informative of cardiovascular diseases in
ECG signals unlike general-purpose SSL algorithms.

III. EXPERIMENTS

A. Benchmarks

Datasets: The SSL algorithms were evaluated on 3 pub-
licly available datasets with train/validation/test proportions
of 70/15/15%. The public datasets we considered comprise
L = 12 lead ECG signals which were split into 10 second
segments sampled at frequency fs = 500Hz. The task
of interest varied across datasets: CPSC [19] consists of
6,877 ECG signals recorded over 6 to 60s. The model
was trained to perform 9-class classification differentiating
among normal, atrial fibrillation, first-degree atrioventricular
block, left bundle branch block, right bundle branch block,
premature atrial contraction, premature ventricular contrac-
tion, ST-segment depression, and ST-segment elevated. PT-
BXL [20] consists of 21,837 ECG records recorded for 10s.
The model was trained to distinguish myocardial infarction
from any condition in normal, cardiomyopathy/heart failure,
bundke branch block, dysrhythmia, myocardial hypertrophy,
valvular heart disease, myocarditis, and healthy controls.
Shaoxing [21] consists of 10,615 ECG signals each with
10s segments. The model was trained to perform 7-class
classification among sinus bradycardia, sinus rhythm, atrial
fibrillation, sinus tachycardia, atrial flutter, sinus irregularity,
and supraventricular tachycardia.

Baseline Algorithms: To demonstrate the efficacy of
ECG-specific pre-training, we compared the median per-

F1 (%) CPSC PTB Shaoxing
Labeled (%) 1 3 10 30 100 1 3 10 30 100 1 3 10 30 100

None 30.13 46.07 66.37 72.15 79.00 53.84 60.71 65.95 69.09 72.58 48.91 62.90 78.90 84.91 87.37
BYOL 33.07 49.03 67.44 73.74 79.65 57.50 61.55 66.08 69.77 71.42 52.59 69.17 80.11 86.46 89.19
SimCLR 32.52 53.29 68.39 75.02 80.35 59.67 63.33 66.47 69.81 72.46 54.13 68.66 81.32 85.40 89.86
DC 33.85 55.93 68.04 74.01 79.47 57.84 62.17 66.41 70.00 71.78 54.40 69.64 80.70 85.82 88.42
ECG 41.56 59.13 69.18 75.01 81.22 60.19 62.55 66.86 70.65 72.49 56.35 69.86 81.49 86.80 89.41

TABLE I
CLASSIFICATION PERFORMANCES WHEN PRE-TRAINED AND FINE-TUNED ON THE SAME DATASET WITH DIFFERENT FRACTIONS OF LABELED DATA.
BOLD INDICATES THE HIGHEST PERFORMANCES EXCEEDING THE NEXT HIGHEST BY AT LEAST 0.05% (HALF THE 2ND LEAST SIGNIFICANT DIGIT).
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Tuning layers Source CPSC PTB Shaoxing
Target CPSC PTB Shaoxing CPSC PTB Shaoxing CPSC PTB Shaoxing

All

BYOL 79.65 72.26 88.77 79.84 71.42 88.84 79.65 72.19 89.19
SimCLR 80.35 72.90 89.06 79.22 72.46 89.20 79.63 72.47 89.86

DC 79.42 71.94 88.86 80.10 71.78 88.77 80.34 71.96 88.42
ECG 81.22 72.54 90.13 80.37 72.49 89.27 80.25 72.43 89.41

Final

BYOL 50.41 58.07 70.27 52.75 55.62 70.15 50.98 57.79 71.28
SimCLR 58.82 63.40 68.88 57.99 64.08 69.90 55.69 62.32 69.51

DC 52.63 60.88 75.87 54.50 58.60 75.78 55.68 59.97 71.53
ECG 68.28 64.15 81.34 67.92 65.93 81.72 58.65 61.40 71.75

TABLE II
TRANSFER LEARNING PERFORMANCES WHEN FINE-TUNED ON TARGET DATASETS AT (TOP) ALL OR (BOTTOM) FINAL LAYERS.

formances of the proposed algorithm with that of random
initialization (None) and 3 state-of-the-art SSL algorithms.
BYOL [22] and SimCLR [23] are built on the contrastive
learning framework, maximizing the agreement between
different views of the same input. Deep clustering (DC) [24]
also maximizes the similarity between current and clustered
previous representations. These algorithms require forming
different views of the same signal, where we used stochastic
augmentations identical to those used for fine-tuning, but
with different probabilities p depending on the algorithm to
maximize performance: Gaussian smoothing with window
size uniformly sampled from 1 to 5 (p = 0.5), additive
Guassian noise (σ = 0.1, p = 0.5), resampling up to
±15% of the original frequency (p = 0.8/0.8/0.8/0.5),
and masking 0 to 50% of data points in the ECG signal
(p = 0.8/0.8/0/0). None used the same augmentations as
the proposed algorithm for fine-tuning.

Implementation Details: We used the m-ResNet architec-
ture [3] which outperformed the average of expert cardiolo-
gists in ECG classification. Both pre-training and fine-tuning
used the Adam optimizer with identical configurations except
for learning rates 10−3 and 5 ·10−4, respectively, batch sizes
128 and 32, and weight decay 10−5 and 0. Regularization
with dropout p = 0.1 for encoding and p = 0.5 for fully-
connected layers was also employed. The α parameter used
to control the convex combination between regression and
classification loss in was found using grid search.

B. Classification Performance
The classification performance (F1-score) after SSL pre-

training along with purely-supervised learning (None) is
reported in Tab. I with increasing fractions of labeled train-
ing data. With 1% of the dataset annotated, the proposed
algorithm attains an ∼ 9% absolute gain in performances on
average over a purely supervised algorithm. It is clear that
the proposed algorithm is most effective when the number of
labeled data is small, and performance gain is evident even
when all labeled data is used. All SSL algorithms were able
to attain relatively high classification accuracy compared to
purely-supervised learning especially when the number of
labeled data was small. This underlines how initialization
schemes designed to efficiently train DNNs in general may
not be sufficient to learn complicated tasks especially when
insufficient annotations are provided.

C. Transfer Learning Performances

Because collecting medical data is difficult, the trans-
ferrability of features learnt from one dataset to another is
paramount. To validate the transferability of features between
different domains, we pre-trained a DNN using the SSL
algorithms on source datasets and fine-tuned on different
target datasets using all available annotations in the fine-
tuning phase. As shown in Tab. II, all SSL algorithms
excel at transferring features learnt from the source to target
dataset, with ECG performing best on most of the tasks.
From this table, it is difficult to determine whether the
pre-training procedures help learn clinically-relevant features
(representation) or if they are effectively yielding nice initial-
ization schemes for better optimization as argued for natural
modalities [18]. The former property may be necessary when
a model need be interpretable, e.g. for medical applications,
and the next section attempts to unveil their effects.

D. Importance of Clinically-Relevant Features

Here, the importance of ECG delineation as learning
clinically-relevant features is highlighted by first training a
DNN on all SSL algorithms, but then fine-tuning only the
final linear layer when performing arrhythmia detection. Had
other general-purpose SSL algorithms helped learn features
relevant to ECG classification, a linear model should have
also performed well on the downstream task. However, the
proposed algorithm outperformed all other SSL schemes by
a large margin when the linear model with fixed feature
extractors was trained on both the same or different fine-
tuning datasets using all available annotated data. In con-
clusion, pre-training on clinically relevant features enhances
the arrhythmia detection performance in contrast to the
observation for natural imaging modalities where fine-tuning
only improved the rate of convergence, and the enhancement
is persistent across training both deep and linear networks.

If the features obtained from ECG delineation contained
enough information to describe arrhythmia, it would be
sufficient to use those features as a dimension-reduction
scheme and perform linear classification as in works de-
scribed previously. The comparison in Tab. II demonstrates
that this is not the case, and that fine-tuning all layers helps
learn additional features absent in ECG delineation.
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E. Ablation Study
We conducted an ablation study to understand how each

component of the proposed algorithm affected the overall
classification performance. Table III compares how the re-
gression and classification loss functions, or their combina-
tion, affected performance. Each regression and classification
losses are shown to improve overall performance by nearly
equal margins on average, with their combination consis-
tently enhancing the classification performance.

CPSC (%) 1 3 10 30 100

Regression 41.00 53.36 68.90 73.95 80.37
Classif. 35.79 57.27 68.57 74.35 79.79
Combined 41.56 59.13 69.18 75.01 81.22

TABLE III
ABLATION STUDY MEASURING THE EFFECT OF EACH COMPONENT.

IV. CONCLUSION

This work motivates the effectiveness of using domain-
specific tasks to pre-train a DNN when the number of
both labeled and unlabeled data is small. We designed an
SSL algorithm addressing this lack of data based on ECG-
delineation, training the network on auxiliary regression and
classification tasks using interval- and axis-based features.
Our experiments demonstrate that the proposed algorithm en-
hances the arrhythmia detection performance across various
proportions of labeled training samples, and that the features
learnt from one dataset properly transfers to another dataset.
Moreover, the benefit of our SSL algorithm is shown for
both a modern convolutional architecture and a linear layer
attached to a deep feature extraction network, suggesting
its potential strength across other various architectures. This
result also verified the need to fine-tune the network after
learning clinically-relevant features as opposed to using ECG
delineation merely as a dimension reduction scheme.

This work could be extended by applying the proposed
scheme to recurrent architectures or larger datasets. The fact
that general purpose SSL algorithms outperformed a purely
supervised learning algorithm insists that the algorithms
enjoy benefits in various applications, but are not yet capable
of achieving maximal performance attainable by learning
domain-specific features. This work builds on top of recent
interest of applying SSL to medical modalities where both
labeled and unlabeled data are scarce [25], and further work
comparing domain-specific algorithms with general-purpose
SSL could stimulate research in both directions.
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