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Abstract— A multi-physical model of a human urinary blad-
der is an essential element for the potential application of
electrical impedance spectroscopy during transurethral resec-
tion surgery, where measurements are taken at different fill
levels inside the bladder. This work derives a multi-physical
bladder tissue model that incorporates the electrical impedance
properties with dependence on mechanical deformation due to
filling of the bladder. The volume and ratio of the intracellular
to extracellular tissue fluid heavily influence the electrical
impedance characteristics and thus provide the connection
between the mechanical and electrical domains. Modeling the
fluid within the tissue links both the physical and histologi-
cal processes and enables useful inferences of the properties
from empiric observations. This is demonstrated by taking
impedance measurements at different fill volumes. The resulting
model provides a tool to analyze impedance measurements
during surgery at different stress levels. In addition, this model
can be used to determine patient-specific tissue parameters.

I. INTRODUCTION

In the course of surgical interventions, tumorous tissue
and its healthy environment must be differentiated. For this
purpose, electrical impedance spectroscopy enables continu-
ous measurements on living tissue to determine the patho-
logically induced changes in the tissue, since compress-
ing tissue causes an increase in impedance. Consequently,
impedance measurements also provide information about the
mechanical properties that are characteristically related to the
pathological changes. In order to make electrical impedance
spectroscopy usable in a minimally invasive surgery through
the urethra, it is essential to study the influence of mechanical
stress on the impedance, since the bladder is repeatedly filled
with liquid such as saline solution and, hence, expanded
during the surgery.

From results found in literature, an increase in pressure
applied externally on the tissue may have a more significant
effect on the impedance measurement as any pathological
changes [1], therefore, the mechanical impact has to be
known in order to draw conclusions about the pathological
changes. While the general impedance response of com-
pressed tissue has been studied many times, the effect of
strained tissue is largely unexplored. In this work an overall
model is presented that establishes the link between the
mechanical and electrical behavior of a urinary bladder. The
focus lies on the behavior of the impedance under strain
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Fig. 1. A pig bladder turned inside out in order to measure the electrical
impedance of the urothelium on the outer surface. The sensor for the
impedance measurements has an inline electrode configuration. Two tubes,
one for the pressure sensor and one for the water supply, were placed in
the bladder and sealed off.

in order to differentiate the pathological changes from the
mechanical changes due to the bladder filling.

The bladder is divided into four tissue layers that have
different characteristic properties. The innermost layer, con-
sisting of a thin multi-cell layer urothelium isolates the urine
from the underlying layers and helps fight infections and
injuries. The remaining tissue layers are composed of a
densely interwoven network of collagen and elastic fibers,
which are primarily responsible for the elastic behavior of the
bladder wall. A change of the bladder fill state directly leads
to a change in the stress in the bladder wall. An increase
in stress in the urothelium leads to an outflow of fluid at
the cellular level. The displaced fluid originates both from
the cells, passing through the cell membranes, and from
the extracellular cavity. The intracellular and extracellular
volumes largely determines the electrical behavior of tissue.
A positive correlation between the amount of tissue fluid
and the conductivity of the tissue at a certain frequency has
been established in [2]: The greater the liquid content of
the tissue, the more conductive it is. Similar results in [3]–
[5] also evince that tissue with a high fluid density, such as
muscle, has a higher conductivity than tissue with a low fluid
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density, such as fat. Separate studies have also investigated
the effect of externally applied pressure on the impedance of
tissue [1], [6]–[8].

In this work, electrical behavior of tissue under compres-
sion is extended and modeled following the expansion pro-
cess during filling of the the urinary bladder. The impedance
measurements are performed on the inner wall of the bladder,
because solely the urothelium, the innermost tissue layer, is
of interest.

The paper is structured as follows. First, the mechanical
model of the bladder is derived, which links the enclosed
volume of the bladder to the mechanical stress of the bladder
tissue wall. This is done condisdering the urothelium and
the surrounding tissue layers as two separate entities. Conse-
quently, the mechanical strain determines the volume change
of the intracellular and extracellular cell volumes in the
urothelium that is derived in the layer model. Subsequently,
the electrical properties are modeled as a function of the extra
and intracellular volumes to complete the overall model.
The electrical model is fit to empiric observations, that were
obtained from impedance measurements at different bladder
fillings. The test setup can be seen in Figure 1.

II. MECHANICAL STRESS-STRAIN MODEL

When filling, the tissue of the bladder exhibits a complex
stress response in the wall, due to a combination of its non-
linear elastic, viscous, and plastic mechanical properties and
the active contraction of the bladder muscles [9]. As a result,
the stress cannot be determined by a simple linear relation.
The following non-linear model considers an empirical ap-
proach to describe the dependence between the stress in
the bladder wall and the radius of the filling volume using
test measurements. A hollow sphere with inner radius r and
wall thickness h has proven to be a suitable description to
approximate the form of the bladder [9]. This allows for
modeling the bladder wall by a cut-out of the hollow sphere
in the form of a cube of edge lengths λ1, λ2, and λ3 on the
coordinate axes x, y, and z, respectively. The orientation of
the finite cuboid is illustrated in Figure 2.
The assumption of incompressible tissue has shown in [9]

Fig. 2. Cuboidal cutout of the bladder wall with edge lengths λ1, λ2 and
λ3. and stresses σxx, σyy along the local coordinate axes.

to be a reasonable approach for modeling a rabbit mesentery,
which exhibits similar stress-strain characteristics as consid-
ered in this work. When taking into account the compressed

volume difference in proportion to the total tissue, it is
found to be negligible [9]. Therefore, this assumption is used
to model the stress-strain relationship, the incompressible
volume of the cuboid bladder cutout is constant

V = λ1λ2λ3 ≡ 1. (1)

Since the identical stress σ = σx = σy is present at
the spherical bladder surface plane under internal pressure
loading, the finite cuboid deforms equivalently in the x and
y directions. The strain

ε =
∆l

l0
=
l − l0
l0

(2)

of a material is defined by the ratio of the extension ∆l and
the initial length l0. Whereas, the deformation is defined by
the ratio

λ =
l

l0
(3)

which is assumed to increase equally in the xy surface plane
resulting in λ1 = λ2 = λ. Combining this with (1), the
bladder thickness can be written as λ3 = 1

λ2 . Hollow spheres
with radius r and the wall thickness h are defined to be thin-
walled, as soon as the condition

r

h
> 10 (4)

satisfies [10]. Considering a thin-walled sphere, Laplace’s
law relates the stress

σ =
pintr

2h
(5)

to the internal pressure pint. The stress in the cutout is
equivalently described by the inner radius

r = λr0 (6)

with the initial inner radius r0, the wall thickness

h =
1

λ2
h0, (7)

and the internal pressure, resulting in

σ =
pintr0
2h0

λ3 = qλ3 (8)

with the pressure component q and the strain ratio λ. The
stress in the bladder wall increases exponentially with an
increasing strain due to adjustments in the collagen struc-
ture as well as to contractile elements. The corresponding
measurement data is analyzed and shown in Figure (3),
where the measured characteristic can be approximated by
the differential trial function

δq

δλ
= −aq + b. (9)

Considering the boundary condition q(λ?) = q∗ at a certain
measured strain ratio λ = λ∗ the solution of (9) with (8)
provides the unique stress model

σ(λ) =
b− e−aλ(beaλ

∗ − aq∗eaλ∗
)

a
λ3. (10)
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Fig. 3. Representation of ∆q/∆λ over q. The parameterization ( ) is a
good approximation of the measured values ( ).

III. UROTHELIAL TISSUE FLUID MODEL

The extra- and intracellular volume links the mechanical
and electrical model. For the impedance measurements,
the electrical current flows mostly through the urothelium,
therefore, its tissue composition is decisive for the resulting
model parameters of the electrical model. Due to this, it is
necessary to investigate how much fluid is displaced from
the urothelium while the bladder is being filled.

A. Internal Tissue Fluid Model

The empirically determined Darcy’s law

q̇ =
Q

A
= K · ∇P (11)

provides a reliable model of the fluid dispersion flow q̇
through a medium, such as tissue, by describing the cor-
relation between the dispersed volume flow Q through a
considered unit area A of the membrane by a constant hy-
draulic conductivity K and the intermediate pressure gradient
∇P [11], [12]. According to (1), the steady state of the
pressure obeys Laplace’s equation

∇2P = 0, (12)

the pressure gradient

∇P =
(puro − pint)

r ln( r+huro
r )

(13)

between the inner wall of the bladder and the outermost
layer of the urothelium can be related to the urothelium
thickness huro, the bladder wall thickness h, the internal
pressure pint, and the pressure puro at the boundary between
the urothelium and the remaining layers. For simplicity, the
parameters that are related to the urothelium are indicated by
the subscript ’uro’; correspondingly, parameters that indicate
the dependencies of the muscle are characterized by the

subscript ’mus’. From (11) follows the relation

q̇ = K
(puro − pint)

r ln( r+huro
r )

(14)

for volume flow Q per area A. As the bladder expands, the
fluid can dissipate through the surface area

O = 4π(r + huro)2 (15)

of the urothelium. Using (11) and (15), the volume change
of the urothelium is determined by

dVuro

dt
= q̇O = K

puro − pint

ln( r+huro
r )

4π(r + huro). (16)

Depending on r, the thickness of the bladder wall

h =
3

√
r3 +

3

4π
Vtis − r (17)

is calculated from the incompressible overall tissue volume
Vtis.

B. Link of Tissue Fluid to Stress-Strain Model

Since the bladder wall is considered to be an orthotropic
material, loads in the transverse xy directions cause the
same tissue reaction in the bladder cutout. The stress-strain
relations for a linear orthotropic tissue model results in the
matrix representationεxxεyy

εzz

 =

 1
E − v

E − vz
Ez

− v
E

1
E − vz

Ez

− v
E − v

E
1
Ezx

σxxσyy
σzz

 (18)

with an uniform Poisson’s ratio v in the surface plane and
vz in the radial z-direction. Shear stresses are neglected as
the dominating loading comes from the induced hoop stress,
hence σyz = σzx = σxy = 0 [13]–[15].

Several parameters are necessary to specify the strain
response. Since this model does not investigate the stress
curves in the xy plane of the cutout, but rather the pressures
and strains in the radial z-direction, fixed elasticity moduli
are used. Depending on the direction of loading, the Young’s
modulus

Ei =
σi
εi

(19)

is determined by dividing the stress by the strain in the
considered direction i. Figure 2 illustrates the stresses on
the bladder cutout: the modified hoop stress σ described
in (10) acts in the xy plane, whereas pint acts in the negative
z direction. Described by (18) with use of (10) and (19)
exploited in the z-direction, the cutout is deformed equally
with

ε =
1− v
E

σ(λ) +
vz
Ez

pint (20)

in both the x- and y-direction and in the z-direction it is
deformed according to

εzz = −2
vz
E
σ(λ)− 1

Ez
pint. (21)
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This behavior of the urothelium is analyzed separately from
the rest of the bladder wall. Since the muscle in the bladder
composes a large portion of the volume, the remaining
portion is designated as the muscle layer for the sake of
simplicity. The interlayer coupling causes the tissue layers
to elongate similarly with εuro = εmuscle, where the strains
are determined by

εuro =
1− vuro

Euro
σuro +

vz,uro

Ez,uro
pint (22)

and
εmus =

1− vmus

Emus
σmuscle +

vz,mus

Ez,mus
puro. (23)

For this reason, the total stress σ(λ) in the bladder wall as
described in (10) can be separated into two components: the
stress in the urothelium and the stress in the muscle σ(λ) =
σuro(λ) + σmuscle(λ). The pressure pint and stress σuro act on
the urothelium, whereas the pressure puro and stress σmus act
on the muscle layer. Using (22) and (23), the stress σmus =
σ − σuro can be used to determine the pressure

puro =

(
1− vuro

Euro
σuro +

vz,uro

Ez,uro
pint

)
Ez,mus

vz,mus

+
1− vmus

Emus
(σuro − σ)

Ez,mus

vz,mus

(24)

that acts at the boundary between urothelium and the muscle
layer. The stress in the urothelium is determined by the
change in its thickness. Considering (21), the strain of the
urothelium in z direction is modeled by

εz,uro = −2
vz,uro

Euro
σuro −

1

Ezuro
pint. (25)

According to this, the stress in the urothelium

σuro = − Euro

2vz,uro
(εz,uro +

pint

Ez,uro
) (26)

depends on the strain of the urothelium. Where the wall
thickness of the urothelium

huro =
3

√
r3 +

3

4π
Vuro − r (27)

is determined by the volume of the urothelium that results
from (16) and in this manner the dynamic model is fully
defined using an initial condition for the initial urthelium
tissue volume.

C. Modeling of the Electrical Tissue Properties

The impedance of tissue depends on its structure and
current load conditions. In general, the conductivity of tissue
depends on the ion concentration and ion mobility [16].
The electrical conductivity σel describes a material’s ability
to transport electric charges. The ability to intercept or
hold charges and rotate molecular dipoles is defined as the
material permittivity εel [16], [17]. For tissues, the material
parameters σel and εel are not constant, but vary with the
frequency of the applied electric field. This behavior is
in accordance with the pathological understanding: at low
frequencies, the dipoles can still align according to the

changing field, which corresponds to a high permittivity.
As a result, charge carriers are forced to move long dis-
tances at a low frequency. This increases the probability of
being absorbed in other tissue elements. As the frequency
increases, the dipoles cannot follow the alternating field and
the permittivity falls. At the same time, the charge carriers
have to cover shorter distances and are trapped less likely. As
a result, the conductivity increases [17]. This simultaneous
increase of conductivity and decrease of permittivity in a
certain frequency range are referred to as dispersion

The Cole-Cole equation for the impedance

Z = R∞ +
R0 −R∞
1 + ( jffc )α

(28)

provides a powerful tool to model this effect in the frequency
spectrum, where α is a specific material constant of the tissue
dispersion. A well-established electrical equivalent circuit
that models the electrical behavior of tissue, at a constant
stress strain level is shown in Figure 4. Here, the impedance
is described by

Z =
[

1
Rext

+ 1
Rint+

1
jωCm

]−1
, (29)

where the resistances Rint and Rext respectively model the
intracellular and extracellular conductances, and the ca-
pacitor Cm determines the capacitive behavior of the cell
membrane [18].

Fig. 4. Representative electrical circuit equivalence for tissue.

IV. EXPERIMENTAL IMPEDANCE MEASUREMENTS

For data acquisition, correlation analysis and modeling,
a series of measurements on a total number of four in-
dividual pig bladders were conducted. The bladders are
taken from fresh pig cadavers provided by the Urology
Clinic in Tübingen, Germany. A picture of the test setup
is shown in Figure 1. In general, pig urinary bladders are a
good representative of the human urinary bladder in terms
of their anatomical and especially, histological nature [6].
Therefore, the measured data and empirical correlations
can be generalized qualitatively to the human bladder. For
the measurements, the pig bladders were turned inside out
and, before they were sealed, a pressure sensor and supply
tube were inserted. As a result, the electrical characteristics
of the epithelium could be measured externally using an
impedance analyzer and a laboratory pump controlled the
bladder fill volume via the supply tube. As seen in Figure 5,
the impedance measurements are consistent with literature
for pressurized tissue [7]. As the fill volume and stress-strain
level in the bladder wall increases, the resistances are also
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Fig. 5. Analyzed measurement results of four independent pig bladders.
Extracellular resistance, intracellular resistance, and membrane capacitance
as a function of volume expansion λ.

increasing. Simultaneously, the capacity of the cell mem-
brane decreases. For a compression load, this characteristic is
discussed in the literature through the tissue fluid. If the fluid
is displaced, this is followed by a decrease in conductivity
and an increase in resistance. This phenomenon is observed
equally for both, the extracellular and intracellular resis-
tances. Taking the measurements, the upfront identification is
given by the courses of the resistance R0 at low frequency
f → 0, the resistance R∞ for f → ∞, and α is freely
chosen to maximize the fit of (28) the to the measurements
of (29). As a result, the necessary parameters for (29) can
be determined from (28). At low frequency f → 0, the
capacitor charges and blocks current through the cell while
all current is conducted by the extracellular matrix through
Rext.

A. Dependency to the Intracellular and Extracellular Volume

The coupling between the strain and the intracellular
volume is established by the empirical model via the relation
of the electrical properties Rint and Cm to the extension λ.
The measured impedance data, shown in Figure 5, were
taken and analyzed related to a specific sensor geometry.
The intracellular volume Vint and extracellular volume Vext
are considered in the following as the effective sum over the
individual cell volumes of the measured sensor area. Based
on the derivation of the pathological correlations between the
intra-/ extracellular volumes and the electrical characteristics
is determined empirically using an optimization-based grey
box regression. For this purpose, the intracellular volume
is coupled with the the intracellular resistance and the
membrane capacitance. The model selection is made based
on histologically justifiable correlations, as well as on the
available measurement data. The impedance measurements
were normalized with respect to resistance Rint,0 and capac-
itance Cm,0 of an unfilled bladder and the following model

structures

R̃int =
Rint

Rint,0
= (1 +

ςint(λ− 1)

Vint,0 − ςint(λ− 1)
) (30)

and

C̃m =
Cm

Cm,0
=
ςint(λ− 1)

Vint,0
(31)

are proposed. Here, ςint is an intracellular volume related con-
ductivity and permittivity coefficient. The solution of param-
eterization pe = [Vint,0, ςint, R̃int,0] for the trial functions (30)
and (31) is provided by a least-square regression on the n
measured sample points, shown in Figure 5. Accordingly, the
model

R̃ext =
Rext

Rext,0
= (1 +

ςext(λ− 1)

Vext,0 − ςext(λ− 1)
) (32)

for extracellular resistance is constructed with the param-
eterization pe = [Vext,0, ςint, R̃ext,0]. Since Vuro is already
given via (16) and Vext = Vuro − Vint, only the extracellular
conductivity coefficient ςext has to be identified by using the
measurement data of the extracellular resistance. Neverthe-
less, the least-square optimization and measurement data can
be further exploited to identify unknown parameters of the
mechanical model since Vuro links all mechanical submodels
into the optimization problem.
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Fig. 6. Intracellular and extracellular space over the deformation ratio λ
with the measured data (O) and the fitted curve ( ).

B. Results of the Empirical Model

In Table I the parameterization of the regression problem is
listed. The obtained values for Vint,0 and ςint are in accordance
with the literature in a plausible range.
Along with the results in Table I and the solutions of the
regression, the regressed prediction is shown in Figure 6.

The regression corresponds to a satisfactory approxima-
tion, as there are no significant deviations between the
modeled curve and the measurements.
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TABLE I
EMPIRICAL MODEL PARAMETERS FOR 4 TEST BLADDERS

Nr Vint,0 [m3] ςint [m3] R̃int,0 [Ω] C̃m,0 [pF] R̃ext,0 [Ω]

1 1.05 · e−8 8.50 · e−9 0.93 0.93 2.53
2 1.75 · e−8 6.40 · e−9 0.94 1.05 2.31
3 9.92 · e−9 1.10 · e−8 1 1 3.13
4 1.99 · e−7 9.35 · e−8 1.44 0.69 2.8

V. CONCLUSION

The presented model includes the mechanical states and
the electrical states of a urinary bladder as a function of the
filling volume, which is determined from both the analyti-
cal relations and empirical correlations. In an experimental
setup, measurements were taken, evaluated and considered
in the model derivation. This model provides a method to
normalize the effect of the mechanical stress strain on the
impedance of the urothelium through a correlation of cellular
volume and electrical properties. This allows first approaches
for tissue classification using impedance spectroscopy for
measurement data taken at different stress-strain levels on
an urinary bladder. The derived model equations and cor-
relations also allow for generating synthetic measurement
data, which can be used to build and develop intelligent data-
driven algorithms to classify impedance measurements.
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