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Abstract— This paper explores power spectrum-based fea-
tures extracted from the 64-channel electroencephalogram
(EEG) signals to analyze brain activity alterations during a
virtual reality (VR)-based stressful shooting task, with low
and high difficulty levels, from an initial resting baseline. This
paper also investigates the variations in EEG across several
experimental sessions performed over multiple days. Results
indicate that patterns of changes in different power bands of
the EEG are consistent with high mental stress levels during
the shooting task compared to baseline. Although there is one
inconsistency, overall, the brain patterns indicate higher stress
levels during high difficulty tasks than low difficulty tasks and
in the first session compared to the last session.

I. INTRODUCTION

Recent reports from American Psychology Association
projects that an estimated 8 in 10 adults experience stress
in their daily lives [1]. As per the circumplex model of
affect, where emotions are represented in two dimensions
- valence and arousal, stress is the state of negative va-
lence and high arousal and lies in upper-left quadrant of
the emotional space [2]. Apart from having a detrimental
effect on one’s physical health and perceptual-motor skills,
stress negatively affects higher-order cognitive processes like
attention, memory, decision making, resulting in impaired
cognitive function and reduced performance [3]. As per the
Yerkes-Dodson principle, relationship between arousal and
performance has an inverted-U curve, where high levels of
arousal result in negative stress and reduced performance [3].
Hence, early detection of stress would improve one’s health
and quality of life and improve performance-based tasks.

VR-based human training systems incorporate affective
computing principles and technologies to customize the
training aids as per the user’s emotional or cognitive states
as indicated by their physiological responses, resulting in
improved training outcomes [4]. One such VR-based training
system for shooting marksmanship [5] is used in this study
to elicit physiological stress responses at multiple levels by
changing the difficulty levels of the shooting task.

Although the response to stressors can be physiological,
behavioral, or psychological, stress mechanism originates in
the brain wherein, after some initial processing, it is relayed
to other parts of the body via activation of the Hypothalamus
Pituitary Adrenal axis and Sympathetic Adrenal Medullary

pathways [6]. Hence, EEG signals have been used to assess
stress during stressful neurophysiological activities [7], [8].

This paper investigates systematic and consistent patterns
in 64 channel EEG signals during the VR-based stressful
shooting task [5] and identifies changes in brain activity
from an initial resting baseline (BL). It also analyzes the
variations in the EEG signals across experimental sessions
performed over multiple days. Power spectrum-based EEG
features have been used in this study to evaluate three key
hypotheses: (1) stress level increases during the shooting task
as compared to the resting baseline (BL), (2) stress level is
higher in a high difficulty (HD) shooting task as compared
to a low difficulty (LD) shooting task, and (3) stress level
reduces as the participants go through multiple sessions. The
remaining paper is organized as follows: Section II describes
the methodology for data acquisition, signal pre-processing,
and feature extraction. Experimental results are discussed in
Section III, and Section IV concludes the paper.

II. METHODOLOGY

A. Experimental Setup and Data Acquisition Protocol

Data for this study was collected from participants (n =
31, 18 males, 13 females, age: 24.99± 3.21 years) recruited
from the student population at the University of Maryland,
Baltimore County. Each participant signed an Informed Con-
sent approved by the Institutional Review Board. There was
no specific exclusion criteria for this study to retain the real-
world variability inherent to actual VR-based training. More
details on the VR system, Go/No-Go VR-based shooting
task, data acquisition protocol, and the general procedures
followed for the shooting sessions are described in [5].

Before the experimental sessions, the participants were
familiarized with the VR system and performed practice
trials. Then they participated in a thresholding session. Based
on their performance in that session, individualized Target
Exposure Time (TET) of the enemy and friendly soldiers
were determined from a Gaussian distribution (range: 0.3s
to 1.36s) for LD (mean: 0.86s) and HD tasks (mean: 0.56s).
TET was set such that on average, 50% of enemy targets are
hit in HD task, and 90% are hit in LD task.

Each participant performed in six experimental sessions
where a session consisted of one LD task and one HD task
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interspersed with a brief period of rest and a one-minute
resting BL. Each task consisted of 360 targets that popped
up at random times, of which 90% were enemy and 10%
were friendly. The participants had to shoot the enemy and
spare the friendly ones. The order of LD and HD tasks
was randomly counterbalanced across all participants and
sessions. Each session had a one-minute initial BL and a
one-minute final BL at the end of the session. During these
resting baselines, the participants were asked to remain quiet,
still, and stare at a fixed dot at the screen’s center.

B. EEG Signal Pre-processing

The EEG signal was obtained using a 64 channel (placed
as per standard 10-10 electrode layout) EEG cap from
the Biosemi ActiveTwo System (BATS) [9] at a sampling
frequency of 2048 Hz per channel. EEGLAB Toolbox (ver.
14.1.2b) was used to pre-process the EEG signal and remove
the artifacts [10]. The signal was re-referenced and down-
sampled to 512 Hz, followed by high pass filtering with a cut-
off frequency of 1 Hz. Large artifacts were removed using
visual inspection for abnormal trends and extreme values,
and bad channels were rejected based on channel statistics.

C. Feature Extraction

The continuous EEG signal was decomposed into fre-
quency bands known to have distinct functional character-
istics - Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz),
Low Beta (12-16 Hz), High Beta (16-30 Hz), and Gamma
(30-40 Hz). Power Spectral Density (PSD) was estimated
by Welch’s periodogram method (4s Hann window sliding
with 50% overlap) in each band. The Absolute average Band
Power (ABP) was computed from the area under the PSD
curve in each band. The Relative average Band Power (RBP)
was determined by expressing ABP as a fraction of the EEG
signal’s total power (RBP = ABP

TotalPower ). Since all the
brain lobes may not be equally affected during the task, all
64 channels have been included in this analysis.

Four sets of features have been used to study the baseline-
to-task variations. The first two sets consist of ABP and RBP
computed for all six bands and 64 channels for the initial BL,
LD task, and HD task in each participant’s session. The other
two sets are computed by scaling the ABP and RBP of the
particular task by the ABP and RBP of the initial resting
BL, respectively, and denoted by sABP (= Task ABP

BL ABP ) and
sRBP (= Task RBP

BL RBP ). The mean value of each feature was
also computed for each task at each channel by removing
4% of outliers at both the tail ends of the distribution and
averaging it over all sessions of all participants, and finally,
converting it into units of dB to achieve normal distribution
for statistical analysis. A paired sample t-test was done
between LD and HD tasks using ABP, RBP, sABP, and
sRBP, and p-values were computed in each case for the null
hypothesis. After artifact correction, a total of 160 sessions
across 30 participants were used for this analysis.

The session-to-session variation was analyzed between HD
tasks of Session 1 (first) and Session 6 (last) using these
four sets of features. For a particular session, the mean

value of each feature was computed for the HD task at each
channel after 4% outlier rejection as above. A paired sample
t-test was done between the two sessions, and p-values were
computed. A total of 19 participants for whom clean data
was available for both sessions were used for this analysis.

III. EXPERIMENTAL RESULTS & DISCUSSION

Fig. 1 shows the mean RBP and mean ABP in each band
for BL, LD task, and HD task after averaging across all
channels, sessions and participants. ABP is lower for BL than
LD and HD tasks, except for Alpha band. On the contrary,
RBP is higher for BL than LD and HD tasks except for Delta
band, where it is lower. Both ABP and RBP have similar
values for LD and HD tasks in each band.

Fig. 1. Bar Plot of average RBP and average ABP across all channels,
sessions and participants in each frequency band for BL, LD, and HD tasks.

A. Baseline to Task Variation

Fig. 2 and Fig. 3 show the distribution of means, of sABP
and sRBP in dB, for HD task in different brain regions
for various bands, respectively. Positive values indicate an
increase in power, and negative values imply a decrease
during the task compared to BL. As shown in Fig. 2, ABP
increases at all channels during HD task across all bands,
with the lowest increase observed for the Alpha band. The
Highest increase for all bands happens in pre-frontal, lateral-
frontal, and temporal areas. The lowest increase occurs in the
central pre-motor and motor cortex area along the midline
and the parieto-occipital area for all bands.

Fig. 2. Distribution of the mean of sABP (dB) for HD Task.

As shown in Fig. 3, Delta RBP also increases across all
the electrode positions. The maximum increase is observed
in the temporal lobe, lateral pre-motor, and motor cortex
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areas. The lowest increase is observed in the occipital,
parietal, and central regions along the midline. An increase
in Delta power in the frontal lobe has been observed during
mental tasks, which involve attention to internal processing
and simultaneous inhibition of distractors or no-go stimuli,
affecting the task’s performance [11].

Fig. 3. Distribution of the mean of sRBP (dB) for HD Task.

Fig. 3 also indicates that Theta RBP and Gamma RBP
increased in the pre-frontal area, occipital lobe, and along the
midline in central and parietal regions. Increased pre-frontal
Gamma RBP has been observed during mental arithmetic
tasks combined with negative social feedback [12] and could
indicate higher mental stress. Theta power has also been
observed to increase in response to higher task demands,
and error-related processing [13].

In Fig. 3, RBP in the Alpha band decreased across all
electrode positions, with the lowest decrease observed along
the midline in the frontal, central, parietal and occipital lobes.
RBP for the Low Beta band and High Beta band increased
in the pre-frontal area and decreased in other regions. Alpha
power, especially in the frontal lobe, is negatively correlated
with stress. It increases during physically and mentally
relaxed conditions [7] and is inhibited during active attention
tasks [14]. Beta power in the frontal lobe is positively
correlated with stress and increases with higher demands
on attention, cognitive load, and performance [15]. Hence,
decreased Alpha RBP and increased Beta RBP in pre-frontal
areas could indicate higher mental stress during HD tasks.

The Alpha Frontal Asymmetry Index (AI), associated with
the valence dimension, has been a popular feature in stress
studies [7]. In stressed scenarios, the left pre-frontal cortex,
associated with positive valence states, has been shown to
have lower power compared to the right hemisphere, which
has been associated with negative avoidance type emotions
[16]. In this case, there is no asymmetry observed in the
Alpha band for both LD and HD tasks.

B. LD Task to HD Task Variation

Paired sample t-test was performed using the four sets of
features (in dB) to locate channels with significant differ-
ences (p − value < 0.05) between HD and LD tasks. Fig.
4 and Fig. 5 show the distribution of the difference between
mean ABP and mean RBP of HD and LD tasks, respectively
and indicate whether the power at channels with significant

differences has enhanced or reduced. Scaled counterparts,
sABP, and sRBP show similar trends for all bands.

In Fig. 4, a significant decrease in Delta ABP was observed
in the pre-frontal area and occipital and parietal lobes during
the HD task compared to the LD task. On the contrary, Fig.
5 shows a significant increase in RBP during HD task for
all other bands in those same areas.

Fig. 4. Distribution of difference (dB) between mean ABP of HD and
LD task. Significant decrease (p− value < 0.05) is only in Delta band in
pre-frontal area and in occipital and parietal lobes.

Fig. 5. Distribution of difference (dB) between mean RBP of HD and LD
task. Significant difference (p − value < 0.05) is in pre-frontal area and
in occipital and parietal lobes, for all bands except Delta band. Theta RBP
increases significantly at some frontal channels as well.

In Fig. 5, increased pre-frontal Gamma RBP could in-
dicate higher stress in HD tasks than LD tasks. Increased
Theta RBP in pre-frontal areas could also imply higher task
demands and error-related processing in HD tasks than LD
tasks. Increased Beta RBP in the pre-frontal and frontal lobe
could be due to higher stress and higher demands on attention
and cognitive load during HD tasks. The increased parietal
and occipital lobe activity in all bands during HD tasks could
indicate increased temporal attention demands to shorter
target exposures in HD vs. LD tasks. The marginal reduction
in Delta RBP during HD task could be due to greater relative
inhibitory control demands under time stress in HD vs. LD
task [11]. The increased Alpha RBP in the pre-frontal and
frontal lobe in HD vs. LD contradicts expectations as Alpha
typically decreases with stress and cognitive demands [14]
and would need further analysis.

C. Session to Session Variation

HD task was used to analyze the changes in brain activity
between Session 1 (first) and Session 6 (last), and a paired
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sample t-test was performed to compare the two sessions.
Fig. 6 and Fig. 7 show the difference (in dB) between
mean ABP and mean RBP for Session 1 and Session 6
(Session1 − Session6), respectively and indicate whether
the power at significant channels has increased or decreased.

Fig. 7 shows that RBP was significantly reduced in Delta
band in the occipital lobe in Session 1 vs. Session 6. RBP
was enhanced considerably in all other bands in the occipital
and parietal lobes and pre-frontal and anterio-frontal areas in
Session 1. The trends of change from Session 1 to Session
6 are comparable to the trends of change from HD task
to LD task, described in the previous subsection, in all
the bands. The performance statistics show an increase in
average shooting success rate from 50% to 60% for HD tasks
which suggest learning or practice-related adaptations in the
above spectral changes [13].

Fig. 6. Distribution of difference (dB) between mean ABP of HD Task
of Session 1 and Session 6. Significant differences (p− value < 0.05) are
only in pre-frontal area and parietal lobe in Delta band.

Fig. 7. Distribution of difference (dB) between mean RBP of HD Task
of Session 1 and Session 6. Significant differences (p − value < 0.05)
are observed in occipital lobe for Delta band and in occipital lobe, parietal
lobe, pre-frontal and anterio-frontal areas for other bands. No significant
channels were observed in Theta band.

IV. CONCLUSION

Overall, RBP appears to differentiate brain state changes
better than ABP, between task difficulty conditions and
changes over time with practice. The reasons for that would
need to be further investigated. The pattern of changes in
different EEG bands is consistent with higher mental stress

levels in LD and HD tasks compared to BL. But, upon
comparing changes in EEG signals across time (Session 1
vs. Session 6) and difficulty levels (HD vs. LD), interesting
results were observed in Alpha band that do not appear to
suggest the changes are associated with changes in stress
level. However, increase in pre-frontal Gamma RBP and Low
Beta and High Beta RBP in Session 1 and during HD tasks
indicates increased mental stress in both cases compared with
their counterparts. Due to paucity of time, the ocular artifacts
could not be removed. These might have contributed to some
of the observations, and will be addressed in future extension
of the work.
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