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Abstract— In recent years the introduction of 5G networks is 

causing a drastically change of human exposure levels in the 

radio frequency range. The aim of this paper is on expanding the 

knowledge on this issue, assessing the exposure levels for a 

particular case of indoor 5G scenario, where the presence of an 

Access Point (AP) was simulated. Coupling the traditional 

deterministic computational method with an innovative 

stochastic approach, called Polynomial Chaos Kriging, allowed 

to evaluate the exposure variability of an user considering the 3D 

beamforming capability of the antenna. The exposure levels, 

expressed in terms of specific absorption rate (SAR) in specific 

tissues, showed low values compared to ICNIRP guidelines. 

 

I. INTRODUCTION 

In the recent years one of the major technological 
innovation is the deployment of 5th generation (5G) mobile 
networks, which will involve an expansion and an evolution 
respect to the existing 4th generation (4G) networks. 5G 
networks are indeed designed to satisfy the users’ new needs 
such as an increase of number of connected devices, data rate 
and a low transmission latency, characterizing the future with 
the reality of smart cities, homes, societies and Internet of 
things (IoT) world [1]. To achieve these ambitious 
requirements, in the last release of the standardization group 
3rd Generation Partnership Program (3GPP) it was underlined 
that one of key point in 5G networks is the use of the 
millimeter wave (mmWave) bands (30 - 300 GHz), to make 
available very large channel bandwidths. However, the very 
high path loss that the signal experiences at these frequencies 
need to be counterbalanced by the adoption of innovative 
technologies, such as dense micro cells’ deployment, massive 
multiple-input-multiple-output (MIMO) systems and three-
dimensional beamforming (3DBF) capability for the antennas, 
to obtain high focalized beams only in the desired direction [2-
4]. 

Although all the benefits that 5G networks are nowadays 
bringing, these innovations will also imply a drastically 
change on the RF-EMF exposure levels of the population, 
causing public concern [5]. This issue was also pointed out 
lately by the IEEE Committee on Man and Radiation 
(COMAR), where it was highlighted the need of more high-
quality research in the RF range exposure scenario, primarily 
because the population has not previously been exposed 
massively to mmWave spectrum [6].  

In literature there are now studies on the human exposure 
assessment considering the deployments of 5G networks, 
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some of them evaluating the exposure in downlink and uplink 
scenarios but limiting the exposure assessment only on a few 
configurations [7-9], others facing the exposure variability of 
the scenario by using ray tracing and statistical techniques [10-
12]. Indeed, one of the major challenges is still the assessment 
of the levels of exposure taking into account the variability and 
heterogeneity that characterize 5G exposure scenarios, without 
investing enormous computational costs. 

The present work fits in this context and is focused on a 
specific case of indoor environment, where the presence of a 
5G Access Point (AP) was simulated. To not limit the analysis 
on only some worst-cases exposure scenario, both 
deterministic and stochastic dosimetry were jointly applied. In 
this way, it was possible to consider the exposure variability 
due to 3D beamforming capability of the AP. Stochastic 
dosimetry is a successful methodology that was applied before 
at LF (low frequency) and RF ranges, proving its validity in 
deal with highly variable and heterogeneous scenarios [13,14]. 
In this case, the stochastic dosimetry approach, called 
Polynomial Chaos Kriging, allowed to consider up to 1000 
different beamforming patterns of the antenna, with low 
computational costs. The exposure levels were evaluated in 
terms of specific absorption rate (SAR), following the ICNIRP 
guidelines [15]. Details of the work are described in the 
following paragraphs.  

II. MATERIALS AND METHODS 

 
 

Figure 1. In the upper part, the details of the 5G AP antenna model, in the 
lower part, the exposure scenario with Roberta model and the ranges of the 

two input scan angles.  
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Figure 1 shows the exposure scenario and the antenna 

model. The AP was modelled considering the innovation 

technologies of 5G networks, i.e. new frequency ranges, a 

dense microcell deployment and beamforming capability, 

resulting in 64 elements antenna with 3DBF capability, 

working at 3.7 GHz. In detail, each element of the antenna is 

composed by a patch antenna, where the patch and ground 

layers are modelled as PEC material and the substrate layer is 

modelled as dielectric (properties: 𝜀𝑟= 2.25 and 𝜎 = 0.0005 

𝑆⁄𝑚, data from [10]). Furthermore, each element of the AP 

was excited with a Gaussian signal for a total input power of 

100 mW, in line with the maximum allowed input power 

values specified in the 3rd Generation Partnership Project 

[16]. At last, the 3DBF capability is regulated by the two scan 

angles of the direction of the main beam in the space. The first 

scan angle regulates the beamforming in the H-plane 

(horizontal plane) with a range of variation between [-50°; 

+50°], whereas the second one regards the beamforming 

direction in the E-plane (elevation plane), varying between [-

25°; +25°]. To assess the exposure levels, the child Roberta 

model (age = 5 years old, height = 1.1 m, mass = 17.6 𝑘𝑔 and 

BMI = 14.8 𝑘𝑔/𝑚) from Virtual Classroom was used [17]. 

The model was placed in a lateral position 50 cm far away 

from the AP, i.e. in the worst exposure conditions found in 

[18]. The exposure was evaluated in terms of SAR mediated 

on whole tissues or mediated on 10g.  

The procedure for combining successfully deterministic 

dosimetry with the innovative stochastic approach, in order to 

evaluate the exposure variability caused by the variability of 

the 3D beamforming pattern, is explained in details in the 

following paragraphs. In particular in “A. Design of the 

Experiment” the deterministic dosimetry has been used for 

finding a set of N experimental observations regarding the 

variable of interest, necessary to build the surrogate model. In 

“B. Polynomial Chaos Kriging and Surrogate Model 

Validation” the surrogate models were obtained with 

stochastic dosimetry and were validated thanks to a cross 

validation technique, in order to define the minimum number 

N of simulations necessary to achieve an acceptable error. 

Lastly, in “C. Analysis of the Exposure”, the surrogate models 

were useful to evaluate the variability of exposure considering 

the beamforming capability of the AP. 

A. Design of the Experiment 

The probability functions of the two different scan angles 
were supposed uniformly distributed, meaning that each 
beamforming pattern has the same probability to appear. 
Furthermore, the Latin Hypercube sampling (LHS) method 
was used on the probability density functions of the two scan 
angles to generate the input coordinates [19]. 

The Sim4life platform (ZMT Zurich Med Tech AG, 
Zurich, Switzerland, www.zurichmedtech.com) was involved 
to conduct the deterministic dosimetry simulations based on 
the set of input coordinates, using the finite-difference time-
domain (FDTD) solver. The computational simulations 
included the 5G AP and the entire model of Roberta, which 
was discretized with a non-uniform grid with a maximum step 
of 0.9 mm. The dielectric properties of Roberta’s tissues were 
chosen according to the literature [20, 21], considering the 
working frequency of 3.7 GHz. At last, the domain boundaries 

were assumed perfectly matched layer (PML) absorbing 
conditions.  

The exposure assessment was conducted evaluating the 
specific absorption rate (SAR) in some specific tissues of the 
model. Precisely, the SAR averaged on tissue mass was 
evaluated for the whole body, the whole head and the whole 
brain, where the following tissues were included in the brain: 
brain grey matter, brain white matter, hypothalamus, 
hippocampus, hypophysis, midbrain, medulla oblongata, 
pineal body, pons, and thalamus. Additionally, the SAR 
averaged on 10 g was assessed for the skin, the brain grey 
matter, and the cerebellum. 

The deterministic dosimetry provided the results that were 
used to implement the surrogate models using the Polynomial 
Chaos Kriging method, as described in the following 
paragraph. 

B. Polynomial Chaos Kriging and Surrogate Model 

Validation 

The stochastic approach chosen for this work is called 
Polynomial Chaos Kriging (PC-Kriging) technique. PC-
Kriging is a novel metamodeling technique, never applied 
before in the framework of 5G exposure assessment, that 
consists in combining the advantages of Kriging (Gaussian 
process modelling) with those of Polynomial Chaos 
Expansions (PCE) [22, 23]. In detail, the PC-Kriging is a 
universal kriging model, whose trend is obtained by a sparse 
set of orthogonal polynomials. The PC-Kriging can be 
expressed by the following form: 

𝑌̂𝑃𝐶𝐾 = 𝑀̂𝑃𝐶𝐾(𝒙) = ∑ 𝛼𝑗𝜓𝑗
𝑝
𝑗=1 (𝑿) + 𝑍(𝒙), (1) 

where the first term ∑ 𝛼𝑗𝜓𝑗
𝑝
𝑗=1 (𝑿) individuates the model 

trend, using the PCE solution, and the second term Z(x) 
represents the calibration term, for describing the stationary 
Gaussian process with zero mean and stationary 
autocovariance, in the form:  

Ε[𝑍(𝒙), 𝑍(𝒙′)] = 𝜎2𝑅(𝒙 − 𝒙′, 𝜽), (2) 

where 𝜎2 is the (constant) variance of the Gaussian 
process, and 𝑅 is its stationary autocorrelation, depending on 
the difference between two sample points (𝒙 − 𝒙′) and its 
hyperparameters 𝜽. 

It is clear that two different steps are necessary to obtain 
the surrogate models. The first one is the determination of the 
orthogonal polynomials and of the unknow coefficient 𝛼𝑗 and 

the second one is the calibration of Kriging model, calculating 
the variance 𝜎2 and the hyperparameters θ of the 
autocorrelation function R. 

Furthermore, there are various techniques to jointly 
optimize the two parts and here it was chosen to use the 
optimal PC-Kriging (OPCK) to minimize the leave-one-out 
error. Regarding the first step, the Legendre polynomials up to 
the fourth order were selected as polynomial basis, considering 
that the probabilistic input functions were uniformly 
distributed and the unknow coefficients 𝛼𝑗 were evaluated by 

least angle regression selection (LARS) algorithm [24]. For 
the second step, the autocorrelation function R was estimated 
using Matérn correlation function and its hyperparameters 𝜎2 
and 𝜽 were calculated by cross-validation estimation and 
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covariance matrix adaptation-evolution strategy (CMA-ES) 
[25]. 

The procedure necessary to obtain the surrogate models 
was implemented by the software “UQLab: The Framework 
for Uncertainty Quantification” [26]. 

At last, to validate the surrogate models, a technique based 
on the leave-one-out cross-validation (LOO-CV), already 
tested on previous works [13, 14], was implemented. The 
LOO-CV technique allows to find a trade-off between the two 
objectives of minimizing the number N of simulations 
conducted with deterministic dosimetry and achieving an 
acceptable error. This technique consists in using all the 
deterministic simulations except one to obtain the surrogate 
model and predicting the value of the excluded simulation by 
using the model. Then the result obtained with stochastic 
dosimetry is compared with the one obtained with determinist 
dosimetry to compute the error.  

The procedure is repeated recursively for each 

deterministic simulation. At last, summing all the errors of the 

leave one out process, the final error formula is:  

𝜀𝐿𝑂𝑂 =
1

𝑁
[

∑ (𝑀(𝑥𝑖)−𝑀̂(−𝑖)
𝑃𝐶𝐾(𝑥𝑖))

2
𝑁
𝑖=1

𝑉𝑎𝑟[𝑌]
], (3) 

where N is the number of deterministic simulations, 𝑀(𝑥𝑖) 
is the result in 𝑥𝑖 obtained with deterministic dosimetry, 

𝑀̂(−𝑖)
𝑃𝐶𝐾(𝑥𝑖) is the result of kriging metamodel in 𝑥𝑖 obtained 

using all the outputs of the experimental design except 𝑥𝑖, and 
𝑉𝑎𝑟[𝑌] is the output data variance obtained with deterministic 
dosimetry. We found that a number N = 60 simulations was 
sufficient to obtain an acceptable error. 

C. Analysis of the Exposure 

The surrogate models were built for the SAR mediated on 
whole tissue (namely, for the whole body, the whole head and 
the whole brain) and for the maximum SAR mediated on 10g 
in specific tissues (namely, for the skin, for the brain gray 
matter and for the cerebellum). After the validation of the 
surrogate models, it was possible to estimate the exposure 
levels for 1000 different combinations of the two input angles 
in the azimuth and elevation planes, with really low 
computational costs. Furthermore, for better characterizing the 
exposure assessment, on each SAR distribution an analysis of 
the percentage of values higher that the 70% of the maximum 
one was conducted and the Quartile Dispersion Coefficient 
(QDC) was calculated as: 

𝑄𝐷𝐶 =
𝑄3−𝑄1

𝑄3+𝑄1
, (4) 

where 𝑄1 and 𝑄3 represent the first and third quartiles of 
the SAR distributions. 

At last, the Sobol variance-based method was applied to 
perform a global sensitivity analysis, in order to evaluate 
which scan angle, between H-plane and E-plane, influences 
more the exposure. This technique consists in decomposing 
the variance of the results as the sum of the partial variances 
of contributions for each input parameter. The Sobol indices 
here reported are normalized and calculated as the ratios 
between the partial variances and the total variance of the 
system output [27].   

 

III. RESULTS 

 

 
 

Figure 2. In the first row, the boxplots of the averaged SAR for the whole 

body, for the whole head and for the whole brain for 1000 different 
combinations of different two input scan angles. In the second row, the 

boxplots of the SAR mediated on 10 g for the skin, for the brain grey matter 

and for the cerebellum for the same 1000 different combinations of the two 
input scan angles. The lower and upper bound of the boxes represent the first 

and the third quartiles, the line is the median value, and the whiskers are the 

minimum and maximum values. 
 

In Figure 2 there are illustrated the boxplots of the SAR 

average on whole body, whole head and whole brain, in the 

first row, and the boxplots of the SAR average on 10g for the 

skin, for the brain grey matter and for the cerebellum, in the 

second row, taking account 1000 possible different 

beamforming patters of the antenna. The boxplots report the 

median, the maximum and the minimum values and the first 

and the third quartiles of the distributions. As it can be 

noticed, the highest values of exposure were obtained in the 

case of the SAR average on mass for the head tissue, with a 

maximum of 8.35 mW/kg, a median of 0.42 mW/kg and a 

mean value of 1.23 mW/kg, whereas in the case of the SAR 

average on 10 g for the skin tissue, with a maximum of 222.23 

mW/kg, a median of 9.71 mW/kg and a mean of 26.80 

mW/kg. The reason of this behavior could be found 

considering the reciprocal position between the antenna and 

the Roberta model. The model head is indeed hit with higher 

probability by the broadside beam of the antenna (that is the 

beam with direction orthogonal to the array and providing the 

highest power), while this don’t happen for the body lower 

part. Additionally, the skin is the most superficial tissue, so 

the majority of the radiation is absorbed by this tissue, 

providing the highest exposure levels in terms of SAR. It is 

important to underline that, anyway, all the values were well 

below the limits indicated by the ICNIRP guidelines [15]. 

Moreover, the analysis on the probability that a value is 

higher that the 70% of the maximum one highlighted very 

small percentages, i.e. a maximum of 7.2 % for the whole-

body and a minimum of 2.8% in the cerebellum. This 

confirms that only when the broadside beam is directed 

towards Roberta model high exposure levels are experienced, 

whereas the beamforming patterns focused in other directions 

cause rapidly a decrease of SAR values. 
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Figure 3. Sobol Indices of the SAR distributions. 

 

Concerning the analysis on the QDC values, we found that 

the exposure scenario is characterized by a high variability, 

with QDC values raging from a minimum of 67% in the skin 

to a maximum of 76% in the cerebellum.  

Finally, Figure 3 reports the results of the Sobol analysis. 

The figure shows that the scan angle in the H-plane influences 

the most the exposure levels, although also the scan angle in 

the E-plane is relevant, in particular for the tissues of the 

brain. 
A deeper investigation of the obtained results can be found 

in [28]. 

IV. CONCLUSION 

The work allowed to expand the knowledge on the RF-

EMF human exposure, considering some of the novelties 

introduced by 5G indoor networks. The validity and the 

effectiveness of PC-Kriging technique was proven for the first 

time in assessing the human exposure levels in a highly 

variable scenario, considering the beamforming capability of 

a 5G AP antenna. Coupling deterministic dosimetry with 

different stochastic dosimetry techniques seems more and 

more a promising tool for dealing with the increase in 

variability and heterogeneity that the exposure scenarios 

encounter in real world. 
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