
  

    

Abstract— Effective triage can help optimize the use of limited 
healthcare resources for managing paediatric patients with 
lower respiratory tract infection (LRTI), the primary cause of 
death worldwide for under 5 years old children. However, triage 
decisions do not consider medium to long term needs of 
hospitalized children. In this study, we aim to leverage data-
driven methods using objective measures to predict the type of 
hospital stay (short or long).  We used vital signs (heart rate, 
oxygen saturation, breathing rate, and temperature) recorded 
from 12,881 children admitted to paediatric intensive care units 
in China. We generated multiple features from each vital sign, 
and then used regularized logistic regression with 10-fold cross 
validation to test the generalizability of our models. We 
investigated the minimum number of recording days needed to 
provide a reliable estimate. We assessed model performance 
with Area Under the Curve (AUC) using Receiver Operating 
Characteristic.  Our results show that each vital sign 
independently helps predict hospital stay and the AUC increases 
further when vital signs are combined. In addition, early 
prediction of the type of stay of a patient admitted for LRTI 
using vital signs is possible, even with using only one day of 
recordings. There is now a need to apply these predictive 
models to other populations to assess the generalizability of 
the proposed methods.  
 

I. INTRODUCTION 

Lower Respiratory Tracts Infections (LRTI) are the leading 
cause of childhood death worldwide, with 2.56 million deaths 
recorded including 808,920 aged  under 5 years old in 2017 [1].  
Current practice when assessing LRTI disease severity is 
principally based on a subjective clinical assessment, heavily 
dependent on training and experience. A widely used practice in 
clinical settings is to triage a patient during consultation i.e. 
allocate appropriate priority to a patient depending on the 
severity of their condition. It is critical to improve triage of 
patients to ensure that resources are appropriately allocated to 
reduce both over-diagnosis and under-diagnosis. Effective triage 
greatly affects the efficiency of health organisations by reacting 
to morbidity and reducing the number of deaths, especially 
during a crisis. Consequently, triage is important in clinical 
decision making to ensure that limited resources are 
appropriately utilised. However, triage focuses on the current 
state of the patient to define what are his/her needs and assigning 
treatment priority. Prediction of a patient’s future needs in the 
medium to longer term is not considered in triage and 
management of resources is therefore limited to short-term. A 
tool able to anticipate patient’s needs (e.g., time spent at the 

 
 

hospital) in the future based on early recorded data should be 
complementary to the triage process.  

In order to triage patients with LRTI, vital signs (heart rate, 
breathing rate, oxygen saturation and temperature) are often 
recorded. These data could also be useful for medium to long-
term estimations including the duration of the hospitalization of 
a patient. Nevertheless, the interpretation of vital signs for 
assessing severity is often subjective, leading to significant 
variance amongst trained professionals when assessing disease 
severity [2]. Some reasons for this difficulty are the challenges 
associated with accurately acquiring vital signs from children 
who may be agitated, the lack of standardised algorithms for 
combining multiple vital signs and the fact that children’s 
physiology changes as they grow older (e.g. normal heart rate 
and breathing rate is different for children at different age groups 
[3]). Consequently, there is variance in healthcare resource use 
and patient outcomes [2]. 

In the context of paediatric patients admitted to hospital, 
predicting the duration of stay of children is potentially valuable 
as this can help ensure appropriate use of hospital resources 
including beds. In this study, we have used a large dataset of 
12,881 paediatric patients admitted to hospital to investigate 
whether we can use routinely collected vital signs (heart rate 
(HR), breathing rate (BR), oxygen saturation (SpO2) and 
temperature) to help predict the duration of hospital stay with a 
minimal amount of data (including triage data and patient’s 
monitoring data during hospital stay). 

II. METHOD 

Figure 1 provides an overview of the methods in our study. We 
will first describe the Paediatric Intensive Care (PIC) dataset, and 
then explain the methods used to prepare (data preprocessing, 
normalization, feature extraction, and labelling and splitting) and 
analyze this dataset.  

A. Study Dataset 
The PIC data, available on PhysioNet to bona fide researchers 

[4], were collected between 2010 and 2018 at The Children’s 
Hospital, Zhejiang University School of Medicine in 5 different 
intensive care units (ICU). These five different ICUs (General, 
Paediatric, Surgery, Cardiac and Neonatal) had a combined 
capacity of 119 beds [4]. The dataset contains laboratory 
information, observations from nurses and physicians including 
diagnosis, hospital electronic medical records, and demographic 
information for each patient. To ensure that our results are 
broadly applicable in several countries, we only extracted 
routinely collected data from the database for subsequent 
modelling. This included patient’s vital signs, age (extracted 
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using patient’s birth date), physician’s diagnosis and duration of 
hospital stay. 
 

 
B. Data Preprocessing 
The first step was to create a list of diseases pertaining to LRTI. 

In the study dataset, patient’s pathologies are described with ICD 
codes with corresponding description text. With expert 
consensus, we defined relevant search terms to identify a subset 
of patients with LRTI. The search terms used were: 
“bronchiolitis”, “LRTI”, “pneumonia”, “bronchitis”, 
“empyema” or “Acute upper respiratory infection”.  

Owing to the large amount of missing data, we subsequently 
derived four datasets, one each for one of the four vital sign: HR, 
BR, SpO2 and temperature. For each vital sign, we defined limits 
to ensure that any outliers are removed. The outlier limits were 
defined to remove physiologically impossible values. These limit 
were: (𝐻𝑅	∉	[4	;	300],  𝑅𝑅	∉	[4	;	100] , 𝑆𝑝𝑂!	∉	[40	;	100] and 
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	∉	 [25	;	 45]). We further refined the outlier 
removal for HR and BR by calculating mean (µ) and standard 
deviation (𝜎) and removing any values that were outside the 
range of [µ − 3𝜎	; µ + 3𝜎	]. 

Finally, only patients with enough records per vital signs were 
selected. Three different duration of collections were analyzed: 1 
day, 3 days and 5 days requiring respectively at least 3, 10 and 
20 records. 

C. Data Normalization 
After cleaning, HR and BR were normalized to ensure that the 

values are comparable across database. This is because the 
normal values of HR and BR vary from birth to adult age [3]. 
These variables were expressed as a distance from the reference 
value that a same aged healthy child would have. The distance 
from the normal is in 𝜎 and ensures that a valid comparison is 
feasible (e.g. between a 15-year-old patient and a 3-day-old baby 
[3]). 

SpO2 was also modified fixing every value above the mean 
(µSpO2 =97.25%) as unlike other vital signs, an SpO2 above µSpO2 
is not abnormal.  

D. Feature extraction 
There was considerable variability in how often vital signs 

were recorded. This meant that the vital signs were irregularly 
sampled and there was no specific pattern of recording, e.g., 
some patients had more (and/or more frequently measured) vital 
sign measurements than others. We, consequently, devised a 
feature extraction method that can deal with irregular sampling 
and variable number of records.  

For each vital sign, we extracted five different features: the µ 
(average of recorded values), the trend (the way values change 
over time), the size (total number of records), the variability of 
vital sign values (𝜎 of measurements values) and the variability 
in the recording frequency (𝜎 of time duration between each 
recording time). For illustration, Figure 2 shows a patient record 
where we have extracted these five features.  

These features were selected to lose minimal amount of 
information and give algorithms the possibility of distinguishing 
patients with stable state from patients getting worse or better, 
and patients with few records (e.g., 10 records over 3 days) from 
patients with several recordings (e.g., >100 records over 3 days).  

The mean of vital signs recorded corresponds to the sum of 
every record divided by the number of records. It does not take 
in consideration the time gap between 2 records, the total number 
of records or the gap between the lowest and the highest value. 
The slope is independent of each individual vital sign value. It 
represents their trend (increasing, decreasing or no change). The 
same trend would be noted for a patient whose SpO2 increases 
from 70% to 71% as a patient whose SpO2 increases from 98% 
to 99%. In our study, we estimated the trend of vital sign records 
by fitting a straight line and extracting the slope of the line as a 
measure of the trend. Finally, the standard deviation, 𝜎, provides 
an estimate of the variation of values around the mean.  

E. Labelling and splitting of data 
We defined two types of stay: “Short stay” and “Long stay” 

based on the number of days spent at the hospital and tested two 
thresholds to define short and long stays. Firstly, we used the 
median number of days spent at the hospital (18 days) allowing 
equal splitting between the two types of stay. Subsequently, with 

Figure 1: Overview of methods employed 
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Figure 2: Features extracted from cleaned and normalized 
data: the mean, slope, variation of value, variation of time and 
number of records. 
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expert consensus, we defined short stay as up to 2 weeks long 
and long stay as over 3 weeks (“Short stay” ≤14 days and “Long 
stay” ≥21 days).  

F. Logistic Regression 
In this study, we have used logistic regression, a machine 

learning algorithm that is typically used as a benchmark. It is a 
very popular algorithm because of its simplicity [5] and 
interpretability [6].  

In the context of the study, we have 2 types of stays (“Short” 
and “Long”) that we will classify (the output) using a fixed 
number of input parameters, dependent on the dataset. 
Mathematically, we consider the input as a vector 
𝑋={𝑥", 𝑥#, 𝑥!, … , 𝑥$} with 𝑥" = 1 and 𝑥#, … , 𝑥$ the n parameters 
(5 per vital signs). 

The 2 possible outputs are converted into a number, generally 
using 0 and 1, that the model will aim to approach using a 
combination of input parameters 𝑋 and weights 𝑃 (1, 2). P is the 
vector of weights {𝑝", 𝑝#, 𝑝!, … , 𝑝$}, attributed to each input in 
𝑋. The prediction of the model is defined using the sigmoid 
function 𝑔 (3) on the scalar product of 𝑃 and 𝑋 (1). 
 
𝑃 ∙ 𝑋 = 	𝑝! ∗ 𝑥! + 𝑝" ∗ 𝑥" + 𝑝# ∗ 𝑥# +⋯+ 𝑝$ ∗ 𝑥$	 (1) 

 
ℎ%(𝑋) 	= 	𝑔(𝑃 ∙ 𝑋)	 (2) 

𝑔(𝑦) =
1

1 + 𝑒&' (3) 

 
During the training phase, the parameters of the model are 

tuned such that the total “cost” of making errors is minimized. 
This cost is calculated with the cost function (4).  
 

𝐶(𝑃) = −
1
𝑚
)*𝑦(") ∗ 𝑙𝑜𝑔 0ℎ$2𝑋(")45 + 21 − 𝑦(")4 ∗ 𝑙𝑜𝑔 0ℎ$2𝑋(")45

%

"&'

7	(4) 

 
with 𝑚 the number of cases in the training set. 
This function returns high values when the predicted value 
ℎ%F𝑋(')G and the expected value 𝑦(𝑖) are different and low 
values when they are similar. 

G. Cross validation 
A 10-fold cross validation strategy was adopted during this 

project to ensure generalization [7]. It consists of splitting the 
data into 10 parts (called folds), and then iterating 10 times over 
all folds, each time using a different fold for testing while using 
the remaining folds for training. Finally, the overall performance 
of the algorithm was assessed by taking the first and second order 
statistics of the performance of each of the ten models. 

H. Regularization 
All logistic regression model trained during this project were 

optimized with regularization. This concept aims to limit 
overfitting penalizing complex solution in favor of the simple 
ones [8][9]. 

Two regularization methods are mainly used: L1-
regularization, also called Lasso (Least Absolute Shrinkage and 
Selection Operator) regression and L2-regularization also called 
Ridge regression [8]. L1 and L2 regularizations are implemented 
as part of the logistic regression by adding, respectively,  

𝑅()**+(𝑃) = 𝜆67𝑝,7
$

,-!

		 (5) 

or  

𝑅./012(𝑃) = 𝜆6𝑝,#
$

,-!

(6) 

to the cost function 𝐶(𝑃) with 𝜆 a parameter to modulate the 
impact of the regularization on the cost function and 𝑛 the 
number of weight and size of 𝑃 [10]. We can see from Lasso and 
Ridge formulas (5, 6) that the main difference between both is 
the power of the weight terms.  

I. One Standard Error rule 
The Lasso regression is also used to reduce complexity of a 

model reducing weakest 𝑃-weight coefficients to 0. However, the 
efficiency of this method directly depends on the 𝜆 value. The 1 
Standard Error (1SE) rule is a heuristic method to select the 
optimal 𝜆  for Lasso regularization to get best performances with 
least number of parameters [11]. Applying the 1SE rule consists 
of testing different values of 𝜆 and calculating, for each of them, 
the resulting average Mean Squared Error (MSE). Then, the 
lowest MSE amongst all calculated is selected, the standard error 
is estimated, and the highest 𝜆  value with MSE below the 
𝐿𝑜𝑤𝑒𝑠𝑡	𝑀𝑆𝐸 + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝐸𝑟𝑟𝑜𝑟 threshold is considered as the 
optimal 𝜆  value. Coefficients of the model are weights attributed 
to each input parameters. A weight equal to 0 means the 
corresponding parameter is not used for the prediction.  

J. Classification and metrics  
We used two different thresholds to define short stay and long 

stay. For both the thresholds, we used L2-regularized logistic 
regression and compared the performance of the algorithms. We 
subsequently compared the influence of L1 and L2 
regularizations on the performance of logistic regression-based 
classifier. We also sought to determine the minimum duration of 
data needed to predict whether a hospital stay will be long or 
short. For this step, we trained logistic regression models using 1 
day, 3 days and 5 days of data and compared the performance of 
the algorithms. Finally, Lasso regression was also applied to rank 
features according to their importance and to identify the most 
useful parameters that can help predict the type of hospital stay.     

We used the area under the Receiver Operator Characteristic 
(ROC) curve to compare the performance of models [11]. The 
ROC is a widely used technique that can help assess the 
performance of a classifier and takes both the true positive rate 
and the false positive rate of a model into consideration.  

III. Results 

The PIC dataset was collected from 12,881 children (7,366 
boys and 5,515 girls) each of whom presented one or multiple 
times to one of the ICU departments between 2010 and 2018. Out 
of those, 971 died during their stay. Details of vital sign values 
of patients are provided in Table 1. 

Our search strategy, by expert consensus, identified 1,194 
patients with LRTI from the database, who were then selected for 
subsequent analysis. 

Performances of the logistic regression algorithm with L2 
regularization and the initial threshold (18 days) to separate 
“Short stays” from “Long stays” showed that each vital sign 
independently helped to predict duration of hospitalizations with 
an AUC between 0.642 for temperature, 0.653 for SpO2, 0.701 
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for BR, and 0.727 for HR. When all the vital signs were 
combined, the AUC increased to 0.782. Table 2 provides the 
AUC with the associated confidence intervals for all possible 
combination of vital signs when separating long stay (≥18 days) 
from short stay (<18 days).  

We were also able to differentiate between a long stay and a 
short stay where “long stay” was now defined as ≥21 days, and 
“short stay” was defined as ≤14 days. In this case, we found the 
AUC for using a single vital sign varied from 0.667 to 0.736. 
However, a model that used HR, BR and SpO2 resulted in the best 
performance (AUC=0.814). 
 
 Table 1: Statistics of vital signs in the dataset 

Vital sign Heart rate Respiratory 
rate 

Oxygen 
Saturation Temperature 

Number of 
records 462,770 709,606 287,310 445,475 

Number of 
admissions 10,856 10,823 8,078 10,521 

Number of 
patients 10,401 10,351 7,803 10,049 

Median 
(5%-95%) 

131 (80 - 
167) 34 (20 - 54) 97 (83 - 99) 36 (36 - 38) 

µa (σb) 128 (27) 36 (12) 96 (6) 37 (1) 
a Mean 

b Standard deviation 

 
 

We did not find a significant difference between the influence 
of L1 and L2 regularizations on the performance of logistic 
regression-based classifiers. The performances of L1 and L2 
regularization were similar for most of models except for the 
merge of HR, BR and SpO2 (AUCL1=0.814 and AUCL2=0.715).  
In addition, we also looked at how many days of data would be 
required to correctly identify the duration of stay. We compared 
3 models using L1 regularization and all vital signs, attempting 
to differentiate long stay (≥21 days) from short stay (≤14 days). 
Figure 3 provide the ROC curves comparing using data from day 
1 only, for first 3 days and first 5 days. The results suggest that 
we can differentiate between long stay and short stay using vital 
signs from the first day of admission, with an AUC of 0.682. 
However, the accuracy of the prediction increases when data 
from more days are used (0.822 for 3 days, and 0.846 for 5 days). 
Lastly, when we ranked the importance of features with LASSO, 
we found that the most useful features were the variability of 
frequency of recording, and the number of records. 

IV. CONCLUSION AND FUTURE WORK 
Our study shows that early prediction of type of stay (short vs 

long) of a patient admitted for LRTI using vital signs recordings 
is possible and does not require collection of large amounts of 
data, nor collection over long periods of time. At least 3 records 
per vital signs collected during the first 24 hours after admission 
can predict length of stay with better than chance level accuracy. 
We also found that healthcare delivery-associated features were 
the most useful for predicting the length of stay. These results 
suggest that re-assessing patients at 24 hours after admission may 
be useful for risk stratifying patients to assign appropriate 
treatment priority. There is now a need to apply these predictive 
models to other populations to assess the generalizability of the 
proposed methods.  
 
Table 1: ROC using L2-logistic regression on 3 days of data split in 2 classes: 
Short stay (<18 days) and long stay (≥18 days), and the number of patients 
in each class 

Model AUC mean (95% CI) Short 
stays 

Long 
stays 

Total 

HR 0.727 (0.583 - 1) 60 39 99 
BR 0.701 (0.596 - 0.812) 202 214 416 
SpO2 0.653 (0.517 - 0.903) 151 171 322 
Temperature 0.642 (0.518 - 0.841) 144 160 304 
HR & BR 0.750 (0.700 - 0.950) 57 39 96 
HR & SpO2 0.859 (0.667 - 1) 30 27 57 
HR & Temperature 0.719 (0.550 - 1) 53 37 90 
BR & SpO2 0.738 (0.615 - 0.926) 141 168 309 
BR & Temperature 0.746 (0.656 - 0.927) 133 153 286 
SpO2 & 
Temperature 

0.688 (0.558 - 0.880) 89 130 219 

HR & BR & SpO2 0.726 (0.444 - 1) 28 27 55 
HR & BR & 
Temperature 

0.749 (0.667 - 1) 52 37 89 

HR & SpO2 & 
Temperature 

0.765 (0.500 - 1)  24 26 50 

BR & SpO2 & 
Temperature 

0.726 (0.583 - 0.865) 88 129 217 

HR & BR & SpO2 & 
Temperature  

0.782 (0.667 - 1) 24 26 50 
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