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Abstract— Computer-aided detection algorithms applied to 

CT lung imaging have the potential to objectively quantify 

pulmonary pathology. We aim to develop an automatic 

classification method based on textural features able to classify 

healthy and pathological patterns on CT lung images and to 

quantify the extent of each disease pattern in a group of patients 

with chronic hypersensitivity pneumonitis (cHP), in comparison 

to pulmonary function tests (PFTs). 

27 cHP patients were scanned via high resolution CT (HRCT) 

at full-inspiration. Regions of interest (ROIs) were extracted and 

labeled as normal (NOR), ground glass opacity (GGO), 

reticulation (RET), consolidation (C), honeycombing (HB) and 

air trapping (AT). For each ROI, statistical, morphological and 

fractal parameters were computed. For automatic classification, 

we compared two classification methods (Bayesian and Support 

Vector Machine) and three ROI sizes. The classifier was 

therefore applied to the overall CT images and the extent of each 

class was calculated and compared to PFTs.  Better classification 

accuracy was found for the Bayesian classifier and the 16x16 

ROI size: 92.1±2.7%. The extent of GGO, HB and NOR 

significantly correlated with forced vital capacity (FVC) and the 

extent of NOR with carbon monoxide diffusing capacity 

(DLCO). 

Clinical Relevance— Texture analysis can differentiate and 

objectively quantify pathological classes in the lung parenchyma 

and may represent a quantitative diagnostic tool in cHP. 

I. INTRODUCTION 

Different forms of interstitial lung disease (ILD) have been 
described, all characterized by the presence of inflammation 
and altered lung interstitium [1]. The importance of a correct 
diagnosis of ILDs is crucial to determine the correct therapy. 
Differential diagnosis is difficult, as ILDs have rather similar 
clinical manifestations. HRCT is the protocol of choice for 
differential diagnosis and is based on the extent and the 
distribution of the various ILD textural patterns, including 
reticulation, honeycombing, ground glass opacity and 
consolidation[2]. This is considered a difficult task for 
radiologists, because of the complexity and the various 
appearance of the disease patterns, leading to high intra- and 
inter-observer variability[3]. Invasive procedures, such as 
bronchoalveolar lavage and histological confirmation, are 
required in ambiguous cases. A reliable, computer-aided 
diagnosis could assist the radiologist, improving diagnostic 
accuracy and avoiding surgical lung biopsies for some 
patients. Automated classification systems have been 
developed to objectively classify and quantify the extent of 
different diseased patterns[3]–[10]. One approach is to extract 
relevant texture and shape features from regions of interest 
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(ROIs) and use supervised machine learning techniques to 
classify the ROI as healthy or pathological. Different textural 
features have been investigated, including first- and second- 
order gray level statistics, fractal dimension[3], [4], wavelet 
transform [7], [11] and filtering techniques[12]. We aim at 
developing an automated classification method based on 
textural and shape features, to evaluate the extent of regional 
disease patterns in a group of patients with chronic 
hypersensitivity pneumonitis (cHP). Also, we aim at 
comparing quantification results to clinical measures.  

II. MATERIALS AND METHODS 

A. Data 

27 patients with cHP were included. cHP diagnosis was 
based on CT findings, known antigenic exposure, exclusion of 
other possible diagnoses, and compatible histology. Forced 
vital capacity (FVC) and DLco were measured and expressed 
as percent predicted. Patients underwent CT scanning at 
suspended full inspiration on a Brilliance 16P scanner (Philips 
Medical Systems, Andover, MA). Scanner settings: tube 
voltage, 120-140 kVp; tube current, 30 mAs; matrix 512x512; 
slice thickness, 1 mm, smooth reconstruction filter (B30f). 
Study protocol was approved by the local research ethics 
committee and all patients signed informed consent. 

B. ROI selection 

Using software MIPAV (Medical Image Processing, 
Analysis and Visualization, v. 7.2.0; http://mipav.cit.nih. gov), 
an experienced pneumonologist and an experienced 
radiologist, manually selected and classified ROIs into air 
trapping (AT), normal (NOR), ground glass opacity (GGO), 
reticulation (RET), consolidation (CON), and honeycombing 
(HB). Ambiguous regions presenting more than one pattern, or 
whose classification was uncertain, were neglected. To 
standardize ROI shape and size, squared ROIs centered in the 
centroid of the manually drawn regions, sized 8x8, 16x16 and 
32x32 pixels, were extracted. Before ROIs extraction, 
edgementation to merge the neighboring segments based on 
the difference in their gray-scale values was applied [4].  

B. Textural and shape feature extraction 

Each ROI was characterized by computing textural and 
shape features (Table 1): gray-level parameters (first and 
second order statistics), morphological parameters, fractal 
parameters and wavelet parameters. 

1)  Gray-level parameters represent the texture based on 
the distribution and the relationship of gray level values in the 
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image. First-order parameters provide statistical properties of 
the intensity histogram of the image. In this study, we 
calculated: mean, mode, standard deviation, skewness and 
kurtosis. Second-order parameters, which characterize the 
spatial relationship of gray levels in the image, were 
determined starting from gray level co-occurrence (GLCM) 
and run-length matrices. The GLCM is computed by counting 
the number of occurrences of the pair of gray level i and j, 
which are at a distance d apart, across a defined direction. In 
this study, three GLCMs corresponding to three different 
directions (0°, 45°, 90°) and one distance d=1 pixel, were 
computed for each ROI. From each GLCM, four features were 
derived: contrast, energy, homogeneity and entropy. The run-
length matrix searches for runs of pixels of the same grey value 
across a given direction, with coarse and fine textures defined 
respectively as large and small numbers in the run. Short-run 
emphasis and the long-run emphasis were calculated. 

2) Morphological parameters were included to provide 
information on the shape of the opacities, based on 
morphological filtering operations [13] and on Minkowsky 
functionals [14].  

The white top-hat transform (defined by subtracting the 
opening of an image from the original image), was applied to 
enhance nodular and linear (reticular) components, using a 
square of 4x4 pixels as a structuring element. The filtered 
image was binarized with an arbitrary threshold equal to 175 
(gray level value), to remove small noise [13]. The resulting 
binary structures were split according to their circularity: 
structures with a circularity >=0.7 were considered as 
candidates for being nodular components (nodular mask), 
whereas structures with a circularity <0.7 were considered as 
candidates for being linear components (linear mask). The 
average pixel value of the original image multiplied 
respectively by the nodular and the linear mask was defined as 
a measure of nodular and linear components in each ROI.  

The morphological black top-hat transform (defined by 
subtracting the original image from the opening of the image), 
was applied to highlight the multilocular component 
(honeycombing pattern), using a square of 7x7 pixels as a 
structuring element. The mean, standard deviation and entropy 
were calculated from this image. 

Minkowsky functionals (MF) characterize binary images 
in terms of shape (geometry) and connectivity (topology). 
Defining a set of thresholds, the gray-level images of the lung 
pattern can be represented as a set of binary images [14]. For 
each binary image, three Minkowsky functionals are defined: 
area (number of white pixels), perimeter (sum of the 
perimeters of the different elements in the image), and Euler 
number (the number of elements in the image minus their 
holes) [15]. We applied two thresholds to binarize the images: 
<-910 HU, to characterize honeycombing and law attenuation 
area, and >-230 HU, to identify consolidation. 

3) Fractal parameters. Fractal is a term used to represent 
patterns that possess self-similarity across scales or levels of 
magnification and have been successfully applied to 
pulmonary imaging, for identifying low attenuation area [16]. 
In this study, we evaluated if fractals were able to characterize 
patterns other than low attenuation area. Thus, we applied four 
gray-level ranges: (-1000, -960) HU for low attenuation areas 
[16]; (-1000, -910) HU for honeycombing; (-900, -870) HU 
for normal; and (-850, -750) HU for ground glass opacity. 
Fractal dimension was computed using boxes with size equal 

to a power of 2, so the boxes size ranged from 1 to 2^p, where 
p was the smallest integer such that ROIs dimension was 
smaller or equal to 2^P. N (number of boxes of dimension R 
needed to cover the non-zero values of the ROI), and R (boxes 
dimension), were graphed on a log-log plot, showing a linear 
relation. The fractal dimension is the mean value of the slopes 
in the log-log plot.  

4) Wavelet transform parameters. Wavelet transform 
iteratively decomposes an image into several components 
based on the frequency content and orientation. In this study, 
we applied a level 2 decomposition via Haar wavelet 
transform. On the details of the transformed image in the 
horizontal, vertical, and diagonal directions, energy was 
computed. 

TABLE I.  SUMMARY OF FEATURES THAT REPRESENT EACH ROI  

C. Feature subset selection 

Parameters’ selection is intended to select the best subset of 

texture descriptors that retain the maximum information 

content with respect to the original set of variables, improving 

classification performance and speeding up the computational 

time. A stepwise forward selection was used. The selection 

was applied 10 times to obtain 10 parameters subsets; from 

these subsets, the parameters which appear at least once were 

selected. Nevertheless, considering that the final application of 

the classifier is on the entire image and that the classifier must 

deal with regions at the interface between classes, we also 

performed an experimental parameters’ selection to exclude 

the parameters which were highly influenced by intermediate 

areas. The final subset included: histogram mode, second-

order gray-level parameters, MF.Euler and fractal 

dimensions.    

D. Classification 

Two classifiers were applied for comparison: a naive 

Bayesian classifier and a support vector machine (SVM) 

classifier. To classify unknown ROIs, models were created 

from known labeled data in the training phase, to find the 

optimal classifier parameters that model the best boundaries 

between the classes.  

Overall, the dataset included 349 ROIs: 51 air trapping 

(AT), 23 consolidation (CON), 79 ground-glass opacity 

(GGO), 23 honeycombing (HB), 83 reticulation (RET) and 90 

normal (NOR). The dataset was divided in training and test 

set. The test set consisted of 10 observations for each class, 

randomly selected, thus the overall number of observations in 

the test set was equal to 60. The training set consisted of the 

remaining observations (initial training set) on which the 

Synthetic Minority Over-sampling TEchnique (SMOTE) 
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algorithm was applied (final training test)[17], [18]. This 

technique creates artificial data based on the feature space 

similarities between existing minority samples. This 

technique is able to generate synthetic instances rather than 

replicate minority class instances; therefore, it can avoid the 

over-fitting problem. The total number of observations in the 

training set after the application of the SMOTE was 480, 

balanced between the classes. On the final training set, a 

model was trained, and its performances were tested on the 

relative test set. To estimate prediction accuracy, 100 

iterations were performed, randomly selecting the test and the 

training sets at each iteration (Fig. 1). Classifiers’ 

performance was assessed through sensitivity (proportion of 

observations correctly classified for each group), specificity 

(proportion of observations classified in a specific group that 

really belonged to that group), and accuracy (proportion of 

observations correctly classified over the entire test set). 

D. Volume processing  

The trained system was applied to HRCT images of the 

whole lung in each patient. Lung segmentation was performed 

using a density-based approach, which selects the automatic 

threshold to separate low-density tissue from the surrounding 

chest wall[19]. To make the segmentation more reliable to the 

anterior and posterior junction, a wavelet pre-processing is 

applied before thresholding[20]. Central airways and central 

vascular structures, reconstructed respectively using the 3D 

confidence connected region growing algorithm and a tubular 

structure enhancement filter[21], were subtracted from the 

parenchyma mask. Each class was quantified on 8 slices, 

equally spaced from top diaphragm to aortic arch. On each 

slice, a square window scrolled on each lung pixel, and the 

centered pixel of the window was classified. The volume 

fraction of each regional disease pattern was calculated.  

E. Statistical analysis 

Data are reported as mean±standard deviation unless 

otherwise stated. Correlation between each class extent and 

lung function parameters was evaluated via Spearman 

correlation. Statistical analysis was performed in IBM SPSS® 

Statistics (IBM Corp. Released 2017. IBM SPSS Statistics for 

Windows, Version 25.0.0.1 Armonk, NY).  

 
Figure 1. Classification system. 

III. RESULTS 

A. Evaluation of classifier and ROI size 

Table II shows the sensitivity and the specificity of the 

Bayesian and the SVM classifiers, with an overall accuracy 

respectively equal to 92.1±2.7% and 91.4±3.0%. Although 

the classifiers’ performances were similar, differing just in the 

sensitivities of HB and NOR patterns, we chose the Bayesian 

classifier for the lower computational cost. 

Table III shows the performance of the Bayesian classifier 

based on ROI size 8x8, 16x16 and 32x32, with an overall 

accuracy respectively equal to 79±10%, 92±3% and 86±4%.  

ROI sized 16x16 shows the higher accuracy and the higher 

sensitivity and specificity for all classes.  

B. Parameters’ selection 

The results obtained with the subset of parameters 

experimentally selected were compared to the results obtained 

with the subset selected via the forward selection method. The 

accuracy of the subset obtained with the forward selection 

was higher than the experimental subset, respectively 

95.0±2.5% and 92.1 ± 2.7%. The sensitivity and precision 

were comparable between the two subsets, except for the 

NOR class, respectively 87.9 ±9.4% and 76.2 ± 12.4%.  

C. Evaluation of patients and correlation with PFTs 

Representative images from four patients with the 

corresponding classification results are shown in Fig. 2. FVC 

correlated with the extent of GGO (ρ=-0.54, p<0.01), HB (ρ=-

0.48, p<0.05) and NOR (ρ=0.58 p<0.01). CON and AT were 

difficult to be interpreted because of their low extent, 

respectively 0.1±0.3% and 0.5±0.9%. DLCO negatively 

correlated with NOR (ρ=-0.48, p<0.05). 

TABLE II.   SENSITIVITY AND SPECIFICITY COMPARISON OF BAYESIAN 

AND SVM CLASSIFICATION  

Sensitivity, and specificity for each texture feature and each classifier. The means and the standard 

deviations of the 100 iterations are reported. (ROI size 16x16). 

TABLE III.  PERFORMANCE OF THE CLASSIFIER BASED ON THE ROI SIZE 

 Sensitivity (%) Specificity (%) 

 8 16 32 8 16 32 

AT 94±6 94±8 91±10 89±8 86±8 88±8 

NOR 73±16 76±12 80±10 87±10 89±10 83±11 

GGO 66±26 96±6 94±8 86±16 89±8 83±9 

RET 66±34 93±8 81±10 90±10 98±4 86±10 

C 96±18 100±0 79±10 96±5 100±2 96±7 

HB 76±17 95±6 91±8 57±17 94±7 87±10 

Sensitivity, and specificity for each texture feature and each ROI dimension. The means and the 

standard deviations of the 100 iterations are reported. (Bayesian classifier) 
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 Bayesian SVM Bayesian SVM 

AT 94±8 94±7 86±8 93±7 

NOR 76±12 87±11 89±10 83±10 

GGO 96±6 90±10 89±8 89±8 

RET 93±8 96±6 98±4 91±7 

C 100±0 100±2 100±2 99±3 

HB 95±6 83±9 94±7 99±4 
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IV. DISCUSSION 

The present study developed a CT-based texture analysis 
method of the lung parenchyma, to evaluate the extent of 
regional disease patterns in cHP. We implemented common 
statistical, morphological and fractal features, which have 
been successfully applied to discriminate diseased patterns[3], 
[13], [14], [16], trying to optimize the classifier performances. 
In particular, Minkowsky functionals were determined by 
combining information derived from the gray-level 
distribution (gray-level thresholds), and shape hypothesis 
(area thresholds). Moreover, fractal dimensions were 
computed on images binarized with different thresholds to 
characterize patterns other than low attenuation areas, as 
originally proposed[16]. Also, the SMOTE algorithm was 
applied to balance the classes. The Bayesian and the SVM 
classification methods, had comparable accuracy, with the 
Bayesian classifier characterized by a higher negative 
predictive value for the healthy pattern. The 16x16 ROI, have 
higher sensitivity and specificity for all the patterns except for 
the air trapping, similarly to Chang et al[22]. Generally, a 
lower ROI produced a classification with a higher variability, 
while a larger ROI produced more homogeneous regions. 
Also, a smaller ROI was able to detect patterns characterized 
by a specific attenuation level, as air trapping, while it was not 
able to detect morphological patterns like HB, that requires a 
larger dimension. The results of the quantitative CT analysis 
were also correlated to pulmonary function tests, showing its 
potential as a quantitative tool in cHP.  

Future work will be oriented to increase the dataset and 
reducing the impact of the artificial data created by the 
SMOTE technique. Also, as manual ROI selection may make 
the results biased, training in other ILDs dataset will be 
performed. A 3D analysis of the lung volume would probably 
improve patient evaluation, but with higher computational 
costs[9]. Moreover, just inspiratory images were considered, 
but it would be of interest to evaluate if the expiratory images 
could provide additional information.  

 

Figure 2.  Representative lung CT images from four cHP patients, with 

the corresponding classification results. Each pixel was color-coded: 
normal, green; low attenuation area, red; ground-glass opacity, cyan; 

reticular opacity, blue, honeycombing, yellow; and consolidation, dark 

blue.  
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