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Abstract— This paper investigates a subject-specific lumped
parameter cardiovascular model for estimating Cardiac Output
(CO) using the radial Arterial Blood Pressure (ABP) waveform.
The model integrates a simplified model of the left ventricle
along with a linear third order model of the arterial tree and
generates reasonably accurate ABP waveforms along with the
Dicrotic Notch (DN). Non-linear least square optimization tech-
nique is used to obtain uncalibrated estimates of cardiovascular
parameters. Thermodilution CO measurements have been used
to evaluate the CO estimation accuracy. The model achieves less
than 15% normalized error across 10 subjects with different
shapes of ABP waveform.

I. INTRODUCTION

Arterial Blood Pressure (ABP) waveform has been a popu-
lar physiological signal used for assessing the hemodynamic
status and cardiovascular health of an individual, especially
in critical care units. It is created as a result of the complex
dynamic interaction between the heart and the systemic
vascular bed and can be used to provide information on both
these components of our Cardiovascular System (CVS).

Several pulse contour methods (PCMs) have used the
ABP waveform to estimate CVS parameters like Stroke
Volume (SV), Cardiac Output (CO) and Total Peripheral
Resistance (TPR). Extensive reviews of minimally invasive
CO estimation methods have been done in [1], [2] and [3].
Some of these methods use 2-element lumped parameter
models with linear and/or non-linear elements where as some
others are based on the area under the systolic region of the
ABP waveform. Few techniques compute the instantaneous
pulsatile aortic blood flow waveform from the ABP signal
and compute CO as the time-averaged flow over a cardiac
cycle. As per the study done in [2], CO estimation based
on Liljestrand and Zander estimator [4] performed better
and had an error of 0.79L/min with calibration. In a sep-
arate study done in [1], Wesseling’s Corrected Impedance
method [5] achieved a Normalized Root Mean Square Error
(NRMSE) of 12.3% without calibration.

Diastolic Pulse Contour Analysis method has been another
popular technique used for CVS parameter estimation where
in the diastolic decay portion of the ABP waveform is
fitted to a modified third order lumped parameter model [6]
with 4 elements. In this model, the arterial compliance is
split up into two components, larger proximal compliance
of the elastic arteries and the smaller distal compliance of
the muscular arteries. Both are separated by an inductor
representing the blood intertance.

Fig. 1. 5th order CVS model.

A subject-specific pulsatile lumped parameter CVS model
is investigated in this paper, for estimating Cardiac Output
(CO) from the minimally-invasive ABP waveform measure-
ments at the radial artery. The model is capable of generating
the morphology of the ABP waveform accurately including
the Dicrotic Notch (DN). Levenberg-Marquardt algorithm
has been used to solve the non-linear least square opti-
mization problem and obtain uncalibrated estimates of CVS
parameters. Thermodilution CO data, measured simultane-
ously with the ABP waveform, has been used to evaluate the
estimation accuracy. The model has been evaluated for three
different shapes of the ABP waveform, across 10 subjects
with a single CO measurement per subject, and achieves less
than 15% NRMSE in all the cases.

II. METHODOLOGY

A. Proposed Model

The proposed 5th order lumped parameter model for this
study is shown in Fig. 1. The 3rd order model in [7]
has been modified to generate the morphology of the ABP
waveform more accurately. The systemic arterial compliance
is split into Csa1 and Csa2, where smaller compliance
Csa1 consists of the compliance starting from the ascending
aorta upto the radial artery and the larger compliance Csa2
consists of the remaining arterial compliance. Hence, Csa1
includes the aortic arch and its left/right limb branches
i.e. brachiocephalic, subclavian, axillary, brachial and radial
arteries and the voltage at that node is used for matching with
the radial ABP measurements. Ra and La is the resistance
and inductance of systemic arteries, respectively. Rs1 is the
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peripheral resistance downstream of radial artery and Rs2
is the remaining systemic peripheral resistance. Systemic
Veins, right heart, pulmonary vascular bed, and left atrium
are lumped into the compliance element Csv.

The heart valves are modeled as pressure-dependent resis-
tors that permit flow only in the forward direction [8]. The
resistors are modeled as smooth sigmoidal functions given by
(1). A large resistance Rcl represents a closed valve i.e. the
flow through the valve is blocked, whereas a small resistance
Rop represents an open valve. If the pressure gradient across
the valve, ∆Pvalve, > 0 then Rvalve = Rop i.e. the valve is
open and if ∆Pvalve < 0 then Rvalve becomes Rcl and the
valve closes.

Rvalve = Rcl −
Rcl −Rop

1 + e−20(∆Pvalve)
(1)

Left Ventricle (LV) is modeled as a single variable ca-
pacitor driven by a time-varying elastance function. One of
the ways of modeling the normalized elastance function for
LV, Elv(t), is given by (2), where Emax and Emin are end-
systolic and end-diastolic elastance, respectively, T is cardiac
cycle length, TM is systole duration and Tr is duration
of early relaxation phase in diastole. The left ventricular
pressure plv(t) is approximated by (3), where V lv(t) is LV
volume and V d is LV volume when transmural pressure is
zero. Both equations (2) and (3) are popular approximations
and have been used in various CVS models [8],[9].

Elv(t) =



Emin + 1
2 (Emax − Emin)[1− cos( πtTM

)]

for, 0 ≤ t ≤ TM
Emin + 1

2 (Emax − Emin)[1 + cos(π(t−TM )
Tr

)]

for, TM ≤ t ≤ TM + Tr

Emin for, TM + Tr ≤ t ≤ T
(2)

plv(t) = Elv(t)(V lv(t)− Vd) (3)

Systole duration, TM , is the time duration from the begin-
ning of the cardiac cycle till End of Systole time (TEOS). In
case of aortic ABP, the incisura is prominent and indicates
EOS. But as the ABP wave travels down to the radial artery,
due to high-frequency attenuation and wave reflections, the
incisura is masked and replaced by DN, which is not a good
indicator of EOS either. In this study, EOS is estimated as
the first point, after the negative peak of the 1st derivative
of the ABP signal, at which the sign of the 3rd derivative of
the ABP signal changes from positive to negative [10].

B. Dataset

ABP data used for this analysis has been obtained from
the Multi-parameter Intelligent Monitoring for Intensive Care
III (MIMIC-III) database on Physionet [11], [12]. Such
subjects are identified for whom simultaneously sampled
ABP waveforms, Cardiac Output (CO) measurements and
clinical meta-data details (age, height, weight) are available.
ABP waveform has been collected in a minimally invasive
fashion at the radial artery with a sampling frequency of 125

Hz and CO has been collected using invasive thermodilution
technique. Since the CO measurements are intermittent, ABP
measurements are taken from the same time window for
which the CO measurement is available.

C. Sensitivity Analysis & Parameter Estimation

Sensitivity analysis is performed to reduce the number of
parameters to be estimated and increase the confidence in
the estimated parameter values. The model parameters are
perturbed about a local operating point and the matrix of
first-order partial derivatives, also known as the Jacobian
Matrix, is computed using finite-difference approximation
method. In order to compare the sensitivities, the partial
derivatives are normalized by the nominal outputs and
the nominal parameter values such that they become non-
dimensional. The obtained sensitivities are ranked and a
subset of the parameter set, which are observed to influence
the variability of the model output considerably, are selected
for estimation. The following set of parameters are found to
be sensitive and are selected for optimization for all subjects:
θ = {Emax, Emin, Rs2, Csa1, Csa2, Ra}.

The cost function to be minimized by the parameter
estimation algorithm uses a least square formulation and is
a sum of the squares of the error between the model outputs
and the measurement data. In order to reduce the estimation
complexity, the model output vector doesn’t consist of all the
points of the ABP waveform and instead, consists of only
a few features extracted from the ABP waveform, like the
SBP and DBP [8], [13]. DN is another characteristic feature
of the ABP waveform which is caused by a combination
of reflected pressure waves. Since the amplitude of the
reflected waves depends on systemic vascular resistance
(SVR), the morphology of the DN also depends on SVR
and Mean Arterial Pressure (MAP). The ABP waveform can
be classified into Class I, II, III and IV, based on the shape of
the DN [14]. Class I waveform has a distinct DN with a peak
and a trough which has been included in the cost function
for optimizing Class I waveform. Class II waveforms have
not been evaluated in this study.

J1 =
1

M

[
i=M∑
i=1

(
SBPest(i)− SBPmeas(i)

SBPmeas(i)

)2
]

+
1

M

[
i=M∑
i=1

(
DBPest(i)−DBPmeas(i)

DBPmeas(i)

)2
]

J2 =
1

M

[
i=M∑
i=1

(
SBPest(i)− SBPmeas(i)

SBPmeas(i)

)2
]

+
1

M

[
i=M∑
i=1

(
DBPest(i)−DBPmeas(i)

DBPmeas(i)

)2
]

+
1

M

[
i=M∑
i=1

(
DNpkest(i)−DNpkmeas(i)

DNpkmeas(i)

)2
]

+
1

M

[
i=M∑
i=1

(
DNtrest(i)−DNtrmeas(i)

DNtrmeas(i)

)2
]

(4)
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Hence, there are two different cost functions, J1 and J2,
which are listed in (4), where M indicates the number of
cardiac cycles used for estimation and i is the index to
the cardiac cycle. DNpk(i) and DNtr(i) are the peak and
trough values, respectively, of the DN of the ith cardiac cycle
of Class-I ABP waveforms. J2 cost function is used in case
of Class I ABP and J1 cost function is used in case of Class
III and class IV ABP.

Since the model output is a nonlinear function of the
parameters, nonlinear optimization technique has been used
to minimize the least squares residual. Also, since the cost
function is easily differentiable, gradient based Levenberg-
Marquardt (LM) algorithm is used to solve the minimization
problem by using the gradient of the cost function to find
the point of minimum cost. The LM technique is iterative
and has been shown to converge even when the initial
parameter values are far from the optimal solution, although
it converges rapidly if the initial parameter estimates are
close to the optimal solution [15], [8].

D. Initialization of Parameters and State Variables

CO estimated from the subject’s meta-data (COmeta) is
used to initialize the state variables and nominal parameters
of the model. It is estimated as per Eq. (5) where height is
in cm, weight is in kg, BSA is body surface area in m2,
ET is Ejection Time in ms, HR is heart rate in bpm and
Age is in years [6].

BSA =
√
height ∗ weight/3600

SV = −6.6 + 0.25 ∗ (ET − 35)− 0.62 ∗HR
+ 40.4 ∗BSA− 0.51 ∗Age

COmeta = HR ∗ SV

(5)

Table I and Table II contain the initial values of the state
variables and the nominal values of the parameters of the
model, respectively. Both have been initialized based on the
broad methodology outlined in [8], which uses the blood
volume distribution and blood flow distribution in various
compartments as outlined in [16]. VT is the total volume of
blood which is assumed to circulate through the body in one
minute and is assumed to be the same as CO estimated using
meta-data i.e. COmeta. FT is the total volumetric flow rate
in ml/s and is assumed to be equal to VT /60. For initializing
qa, Rs1 and Rs2, it is assumed that 10% of FT flows
through the arms i.e. through Rs1 and remaining 90% of FT
flows through Ra and Rs2. The systemic artery compliances,
Cs1 and Cs2, are initialized as ratio of stressed volume to
mean pressure at their respective nodes. The systemic arterial
network and the systemic venous network are assumed to
contain 13% of VT and 72% of VT , respectively. Since the
Cs1 compartment is assumed to consist of the compliance
starting from the ascending aorta upto the radial artery, it is
assumed to contain 3% of VT and Cs2 compartment contains
the remaining 10%. Stressed Volume is assumed to be 25%
for Cs1 compartment, 19% for Cs2 compartment and 5%
for Csv compartment.

Peak of the elastance function, Emax, happens at TEOS
i.e. the end of systole and is initialized as pEOS/(50−Vd),
where end-systolic volume is assumed to be 50mL. Emin is
initialized as 4/(120 − Vd), where end-diastolic pressure is
assumed to be 4mmHg and end-diastolic volume is assumed
to be 120mL.

TABLE I
INITIAL VALUES OF CVS MODEL STATE VARIABLES

State Physiological Meaning Initial Value Unit

psa Arterial pressure@Csa1 mean(ABPmeas) mmHg
psa2 Arterial pressure@Csa2 0.95 ∗ psa mmHg
psv Systemic venous pressure 3.5 mmHg
V lv Left ventricular volume 60 ml
qa Flow between Csa1 & Csa2 0.9 ∗ FT ml/s

Nominal values for Ra and La depend on class of the
ABP waveform. La is set to .0045, .006 and .0035 for Class
1, Class III and Class IV ABP, respectively. Ra is in the
range 0.04 to 0.12, 0.12 to 0.2 and 0.1 to 0.14 for Class 1,
Class III and Class IV ABP, respectively. Optimum value for
Ra is the one with the lowest waveform NRMSE.

TABLE II
NOMINAL VALUES OF CVS MODEL PARAMETERS

Parameter Physiological Meaning Nominal Value

Emax Maximum elastance pEOS
50−10

Emin Minimum elastance 4
120−10

Tr Elastance Relaxation time TM/2

TM Time for Max Elastance TEOS

Vd Unstressed LV Volume 10

Rcl Closed Valve R 20

Rmv,op Open Mitral Valve Res. 0.007

Rav,op Open Aortic Valve Res. 0.001

Rs2 Peripheral resistance 2 psa2−psv
qa

Csa1 Systemic artery compliance 0.25∗0.03∗VT
psa

Csa2 Systemic artery compliance 0.19∗0.1∗VT
psa2

Csv Systemic venous compliance 0.05∗0.72∗VT
psv

Ra Arterial resistance 0.04− 0.14

La Arterial inductance .0045/.0035/.006

Rs1 Peripheral resistance 1 9 ∗ (Rs2 +Ra)

III. SIMULATION RESULTS
Normalized Root-Mean-Square Error (NRMSE) is used

as the goodness-of-fit metric to determine how well the
estimated ABP waveform matches the ABP measurements.
It is given by (6), where N is the number of samples used
to assess the fit.

NRMSE =

√√√√ 1

N

i=N∑
i=1

(
ABPest(i)−ABPmeas(i)

ABPmeas(i)

)2

(6)
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Fig. 2. (a) Class I, (b) Class III and (c) Class IV waveform.

Fig. 3. CO and Waveform % Estimation Error. Subjects 1 to 6 have Class
I, 7 & 8 have Class III and 9 & 10 have Class IV ABP waveforms.

Another performance metric used is the normalized error in
estimating CO and is computed using (7). CO is estimated
as the average current flowing out of aortic valve during
systole. For each subject, 10 cardiac cycles of ABP data is
selected for parameter estimation. The ABP data is in a small
window around the time instant for which thermodilution CO
measurement is available for that subject.

CO NError =
COest − COmeas

COmeas
(7)

Figure 2 indicates that the 5th order model can generate
the shape of the DN and the morphology of the ABP
waveform reasonably well for all classes. Figure 3 shows
the CO estimation performance for the investigated model
for 10 subjects with different classes of ABP waveforms. As
shown, the proposed technique achieves waveform NRMSE
of less than 8.5% and CO estimation error of less than 15%
for all subjects.

IV. CONCLUSION

This paper explores a subject-specific pulsatile lumped
parameter model for estimating CO using the radial ABP
waveform. The model is evaluated against thermodilution
CO measurements and achieves less than 15% normalized
error in all the cases. This preliminary study includes only
10 subjects with one CO measurement and a more extensive

study with larger data set will be conducted in future.
Reliability of this model in tracking relative changes in CO
will also be investigated in future.
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