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Abstract— In the past decade, the rapid development of ma-
chine learning has dramatically improved the performance of
epileptic detection with Electroencephalography (EEG). How-
ever, only a small amount of labeled epileptic data is available
for training because labeling requires numerous neurologists.
This paper proposes a one-step semi-supervised epilepsy detec-
tion system to reduce the labeling cost by fully utilizing the
unlabeled data. The proposed neural network training strategy
enables a more robust and accurate decision boundary by
forcing the consistency of the double predictions on the same
unlabeled data. The results show that the Area Under Receiver
Operating Characteristic (AUROC) curves of our proposed
model are 10.3% and 4.9% higher than the supervised methods
on CHB-MIT and Kaggle datasets, respectively.

Index Terms— epileptic seizure detection, semi-supervised
learning, EEG, machine learning, double predictions

I. INTRODUCTION

Epilepsy is a common chronic disease that causes a
repetitive and irregular abnormal discharge of brain neurons,
leading to transient brain dysfunction. Nearly one percent
of people worldwide have epilepsy, and the number of
patients is growing at a rate of 5% every year. Therefore,
studying epilepsy, including clinical trials, drug treatments,
and signal analysis, has received significant attention. Due
to high detection accuracy, Deep Neural Network (DNN)
models, including Long-Short-Term-Memory (LSTM) [1],
Convolution Neural Networks (CNNs) [2], and Graph Neural
Networks (GNNs) [3], have been widely used to analyze
epileptic signals. However, the models trained on publicly
available datasets are inapplicable to actual patients due to
personality and individual differences. Therefore, the DNN
model is often trained with the patients’ self-epileptic data to
achieve higher performance. However, labeled epileptic data
are always insufficient because of the shortage of epilepsy
experts.

Recently, semi-supervised learning has demonstrated pow-
erful capabilities to reduce the demand of the labeled data
with comparative high recognition accuracy [4] [5]. In the
field of seizure detection or prediction systems, Truong et
al. [6] trained a GAN in an unsupervised manner, and the
discriminator was used as a feature extractor. The model
achieved the Area Under Receiver Operating Characteristic
(AUROC) curves of 77.68% and 75.47% for the CHB-MIT
scalp EEG dataset [7] and Freiburg Hospital intracranial
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EEG dataset [8], respectively. Ahmed et al. [9] employed
a mixing of Variational Autoencoder (VAE) together with a
supervised classifier to achieve the 99% overall accuracy on
the Department of Epileptology at Bonn University (DEBN)
dataset [10].

Though conventional works have achieved promising re-
sults with semi-supervised learning methods, sufficiently
large label data are still required for the training. The reason
is that the existing semi-supervised methods for seizure
detection require two steps. Unlabeled data are used for
feature extraction in the first step, and then in the second
step, labeled data are used for classification training. To sig-
nificantly reduce the amount of the labeled data, we propose
a one-step epilepsy detection system. A random enhancing
method is applied to both the unlabeled data and labeled
data to generate two different representations in our system.
One is for training the student model, and another is for the
teacher model. Our system learns from a small amount of
labeled data while trying to give a robust recognition on a
large amount of test data, which can minimize the diagnostic
tasks of specialists. The proposed method is evaluated on the
CHB-MIT dataset, and the UPenn & Mayo Clinic’s Seizure
Detection Challenge database [11].

The rest of the paper is organized as follows: Section II
introduces the datasets and our proposed semi-supervised
learning method. Section III demonstrates the evaluation
results of our approach. The comparison with other state-
of-the-art methods is also discussed in Section III. Finally,
the conclusion is drawn in Section IV.

II. PROPOSED METHOD

In conventional supervised training, abundant labeled data
are always needed to learn robust decision boundaries.
The proposed system enhances the data twice to training
the teacher network and student network, respectively. The
design minimizes the difference between the two predicted
results of the unlabeled data after data enhancements in
the training process. As a result, the boundary of decision-
making can be pushed away from the labeled data points,
increasing the robustness of the model.

A. Datasets

Table I and II show the summary of two EEG datasets
used in this paper. The UPenn and Mayo Clinic’s Seizure
Detection Challenge database is provided in a competition by
Kaggle (2014), which consists of intracranial EEG (iEEG)
recordings of four dogs and eight patients. The canine
recordings were sampled from 16 electrodes at 400 Hz, and
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TABLE I
SUMMARY OF DATASET PROVIDED BY KAGGLE

No. of
subjects

No. of
channels

Ictal
data(s)

Interictal
data(s)

Unlabeled
data(s)

Kaggle 12 16-72 2477 23445 32915

TABLE II
SUMMARY OF CHB-MIT DATASET

No. of
patients

No. of
channels

No. of
seizures

Interictal
hours(h)

CHB-MIT 10 23 52 215.7

the human recordings were sampled from varying numbers
of electrodes (ranging from 16 to 72) at 500 Hz or 5 kHz.
All data were pre-organized into 1s iEEG segments as ictal
or interictal. Note that the unlabeled data in Table I is the
test dataset in the competition.

CHB-MIT dataset contains 23 scalp EEG (sEEG) records
collected from 22 pediatric patients with 844 hours of
continuous EEG signals, including 198 seizures. These EEG
data are obtained at the sampling rate of 256 Hz. Similar
to the binary classification problem in the Kaggle dataset,
the preictal period is defined as 30 minutes before seizures
onset, and the interictal period is at least 4 hours away from
seizures. We combine the closed seizures that the interval
of seizures is fewer than 30 minutes. In pre-processing, we
divide the EEG records in the CHB-MIT into 30 seconds
fragments similar to [6].

B. Pre-processing

The EEG signal frames are first filtered through a band-
pass filter to avoid the interference of baseline and remove
the high-frequency data containing little information. After
filtering, the one-second segments are transformed by Fast
Fourier Transform (FFT), denoted as X(f). Power spectrum
analysis based on FFT provides the center frequency of
rhythmic fluctuations without phase information. The power
spectrum of the segment is mapped onto the Mel scale [12] to
produce the features of the EEG signals. The power spectrum
|X(f)| with a filter bank with L filters is defined as

Wl(k) =


k−o(l)

c(l)−o(l) o(l) ≤ k ≤ c(l)
h(l)−k

h(l)−c(l) c(l) < k ≤ h(l)
0 else

(1)

Final features m(l) are obtained by performing the loga-
rithm to the results of each triangle filter, which is defined
as

m(l) =

h(l)∑
k=o(l)

Wl(k) |X(k)| l = 1, 2, ..., L (2)

where the center frequency c(l) of each triangle filter
is uniformly spaced in Mel-scale, and o(l), c(l), and h(l)
are the lowest frequency, center frequency, and the highest
frequency for the lth filter, respectively. The relationship

between adjacent triangle filters is given by

c(l) = h(l − 1) = o(l + 1) l = 2, 3, ..., L− 1 (3)

For a 30s segment, Short-Time Fourier Transform (STFT)
and power spectrum on Mel scale of frequency are applied
to transfer the data to the time-frequency domain.

C. Semi-supervised Learning Method

As shown in Fig. 1, Mean Teacher taken from [13] is
used as a semi-supervised classifier in this paper. When there
is a lack of high-quality labels, the limited training data
cannot describe the data distribution completely. Therefore,
additional distribution information is supplemented by using
unlabeled data with consistency cost that is defined as

Lconsistency(θ) =
1

N

N∑
i=1

‖f(xi, θ, η)− f(xi, θ′, η′)‖
2 (4)

Where f(x, θ, η) represents the prediction of the student
model (with weights θ and noise η). The other f(x, θ′, η′)
is the prediction of the teacher model.

The semi-supervised model is trained as follows. Firstly,
the input batch, which consists of half of unlabeled data and
half of labeled data, is processed by a random augmentation
to generate two different representations for each fragment.
Secondly, the student model and the teacher model take
these two representations to obtain each prediction. Note
that the student model has the same structure as the teacher
model but with different parameters. The total loss is the
combination of classification loss and consistency loss, while
we only accept classification loss for labeled data. Finally,
the backpropagation only works on the student model. The
teacher model uses the Exponential Moving Average (EMA)
weight of the student model during training, which is defined
in (5).

θ′t = αθ′t−1 + (1− α)θt (5)

To adapt EEG fragments with different lengths, we achieve
augmentation by adding noise to the model’s inputs to sim-
ulate the Gaussian noise, which is inevitable when recording
the EEG signals.

As the features have been extracted in the pre-processing,
a Convolution Neural Network (CNN) is applied as the
classifier. The proposed CNN consists of three convolutional
layers followed by a fully connected layer with a Softmax
activation function. Meanwhile, we use Mean Squared Error
(MSE) as the classification loss.

Lclassification(θ) =
1

N

N∑
i=1

‖yi − f(xi, θ, η)‖2 (6)

After training, the teacher model is used to complete
prediction and evaluation, as recommended in [13].
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Fig. 1. Semi-supervised learning method

Fig. 2. Evaluation method. The blue and green blocks indicate the data
used for training and testing, respectively. Gray slashed block means data
are not used in that scenario.

D. System evaluation

Since the two datasets used in this paper are constructed
in different ways, and the unlabeled data can be directly
represented by the test data in the Kaggle competition,
we carried out different evaluation strategies for the two
datasets, as shown in Fig. 2. When testing the proposed
method on CHB-MIT, the dataset is processed as follows.
20% of the whole dataset is chosen randomly for verification.
Furthermore, we remove a certain number of labels from
the training set, leaving C% (e.g., 1% and 5%) of the
training data with labels, and the remaining data is treated
as unlabeled data. The evaluation is equal to 5-fold cross-
validation when C%=100%, so we can compare ours with
other state-of-the-art methods.

As for the training and test set provided by Kaggle, the test
set at the competition is treated as unlabeled data to train the
model. Moreover, the training set, which has labels, would be
divided into training and test sets. We conduct experiments
from two scenarios. The first is that C% (e.g., 10% and 30%)
of labeled data is applied to train the model and the rest for
evaluation. Note that when C%=90%, this situation is equal
to 10-fold cross-validation. The second is that the model
uses a different number of unlabeled data while training with
only 1% of labeled data, which can test the impact of the
increase in unlabeled data. We adopt AUROC value as the
measurement of system performance.

TABLE III
COMPARISON OF AVERAGE PERFORMANCE USING CHB-MIT

1% 5% 10% 100%
Truong et al. [6] 83.79
Zeng et al. [17] 99.6
Supervised-only 75.69 81.05 91.35 98.57

Proposed method 85.99 94.88 97.04 98.80

TABLE IV
COMPARISON BETWEEN THE PROPOSED AND SUPERVISED-ONLY

METHOD ON EACH PATIENTS USING CHB-MIT

Subject Proposed method Supervised-only
1% 5% 10% 100% 1% 5% 10% 100%

chb01 97.9 99.0 99.6 99.9 88.6 96.4 89.9 99.8
chb03 79.6 99.2 99.1 99.1 62.3 59.9 93.4 99.1
chb05 84.6 92.8 97.0 99.1 77.0 68.0 91.4 99.9
chb09 94.3 99.0 99.8 99.4 77.1 96.1 98.9 96.3
chb10 73.8 92.1 94.8 98.1 52.2 78.6 84.7 99.4
chb14 74.3 85.3 89.4 97.8 70.6 59.9 75.2 96.9
chb18 78.5 91.2 96.0 97.6 68.3 67.2 90.2 94.9
chb20 93.7 99.6 99.9 99.6 97.8 96.5 98.8 99.9
chb21 87.7 90.6 94.4 97.0 74.9 89.4 92.1 99.1
chb23 94.9 99.5 99.9 99.9 87.5 98.1 98.5 99.9

III. EXPERIMENTAL RESULT

In subsequent chapters, supervised-only represents the
classification system using the same neural network as the
proposed method but does not apply the semi-supervised
learning framework, which means it can only learn from the
labeled data.

A. Performance on CHB-MIT

Table III shows the results of the proposed method com-
pared with the supervised-only method and other state-of-
the-art methods using the CHB-MIT dataset. Table IV lists
the AUROC values on each patient when providing a differ-
ent amount of labeled data. Our method has outperformed
the supervised-only method on almost all patients. When 1%
labels are available, our method achieves 85.99% AUROC
on average, which is 10.3% and 2.2% higher than the
supervised-only method and the method proposed by Truong
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TABLE V
COMPARISON OF AVERAGE PERFORMANCE USING KAGGLE DATASET

10% 30% 50% 70% 90%
Wang et al. [14] 98.39

Truong et al. [15] 95.85
Hills [16] 95.91

Supervised-only 94.52 97.04 98.28 98.87 99.12
Proposed method 96.45 97.59 98.60 98.97 99.38

TABLE VI
COMPARISON BETWEEN THE PROPOSED AND SUPERVISED-ONLY

METHOD USING KAGGLE DATASET

Subject Proposed Method Supervised-only
10% 30% 50% 70% 10% 30% 50% 70%

Dog1 94.3 96.6 97.5 96.8 90.2 96.6 96.1 98.0
Dog2 99.1 98.9 99.0 99.7 98.5 99.5 99.3 99.9
Dog3 99.5 99.5 99.4 99.6 98.8 99.5 99.5 99.0
Dog4 97.3 96.5 96.8 97.8 95.2 96.8 96.7 97.6
Pat1 82.5 88.3 99.4 100 72.7 80.7 96.4 98.1
Pat2 99.5 99.5 99.4 99.8 98.2 99.6 99.6 98.3
Pat3 95.2 95.7 95.5 96.8 94.8 95.6 95.6 99.3
Pat4 92.6 98.8 99.0 99.1 91.4 99.0 98.6 98.3
Pat5 99.5 99.7 99.7 99.8 98.3 99.6 99.7 99.4
Pat6 99.9 99.9 99.9 99.9 99.7 99.9 99.9 100
Pat7 99.6 99.1 99.0 99.3 99.2 99.1 99.5 100
Pat8 98.3 98.6 98.5 99.0 97.3 98.5 98.5 98.6

et al. [6], respectively. The proposed method achieves the
performance of 98.80% AUROC value when all labels are
provided. The results demonstrate that the proposed system
can effectively improve the detection performance, especially
when few labels can be obtained.

B. Performance on UPenn and Mayo Clinic’s Seizure De-
tection Challenge database

• Scenario 1: As shown in Table V, the results indicate
that the proposed method can achieve 96.45% AUROC
value when only use 10% of the labeled data, which is
0.6% higher than Truong et al. [15].

• Scenario 2: Table VII shows the performance while
providing the model different amounts of unlabeled
data. When ×8 unlabeled data is provided, our proposed
method can reach 91.2% AUROC, which is 4.9% higher
than the supervised method. It can be inferred that
our proposed method can learn more information from
additional unlabeled data to improve the prediction
results.

IV. CONCLUSION

In this paper, a one-step semi-supervised seizure detection
system with recorded EEG signals has been proposed. We
have shown that extracting the power spectrum of Mel scale
of frequency and the Mean Teacher can achieve superior
performance when there are few labels. Meanwhile, we have
used additional unlabeled data to obtain a better score than
the benchmark, which shows a possible future promotion
direction. It is feasible to use easy-to-obtain unlabeled data
to improve the accuracy of seizure prediction and detection.

TABLE VII
PREDICTION PERFORMANCE WHILE APPLYING DIFFERENT AMOUNTS OF

UNLABELED DATA ON KAGGLE DATASET

×0 ×2 ×4 ×8
Supervised-only 0.863 0.863 0.863 0.863

Proposed method 0.869 0.892 0.905 0.912
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