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Abstract— Convolutional Neural Networks (CNNs) have
recently been proposed to automatically detect the pharyngeal
phase in videofluoroscopic swallowing studies (VFSS). However,
there is a lack of consensus regarding the best algorithmic
strategy to adopt for segmenting this important yet rapid phase
of the swallow. Moreover, additional information is needed to
understand how small the detection error should be, in view
of translating this approach for use in clinical practice. In
this manuscript we compare multiple CNN-based algorithms
for detecting the pharyngeal phase in VFSS bolus-level clips,
specifically looking at 2DCNN and 3DCNN approaches with
different temporal windows as input. Our results showed
that a 2DCNN analysis on 3-frame windows outperformed
both frame-by-frame approaches and 3DCNNs. We also
demonstrated that the detection accuracy of the pharyngeal
phase is very close to the clinical gold standard (i.e., trained
clinical raters). These results demonstrate the feasibility of deep
learning-based algorithms for developing intelligent approaches
to automatically support clinicians in the analysis of VFSS data.

Clinical relevance— Accurate and reliable segmentation of
the pharyngeal phase will support clinicians by reducing
the time needed for rating VFSS data. Moreover, automatic
detection of this phase can be seen as a foundation for building
novel and intelligent approaches to detect clinical features of
interest in VFSS, such as the presence of penetration-aspiration.

I. INTRODUCTION

The videofluoroscopic swallowing study (VFSS) is the
gold standard technique for clinical assessment of dysphagia
(i.e., swallowing impairment) [1], [2]. VFSS is an imaging
technique that involves the recording of the head and neck
structures using an X-ray machine (the fluoroscope), usually
in lateral view, during the swallowing of food items mixed
with a radiocontrast agent such as barium sulfate. With this
technique it is possible to observe bolus motion in real-time,
as well as movement of the anatomical structures responsible
for swallowing. Swallowing can be divided into three phases:
1) oral phase – the food or liquid is processed in the oral
cavity and delivered into the pharynx by the tongue; 2)
pharyngeal phase – the bolus is transported through the
pharynx and upper esophageal sphincter (UES) by a series
of coordinated movements, which include closure of the
entrance to the airway to prevent penetration-aspiration; and
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3) esophageal phase – the bolus passes through the esophagus
and travels towards the stomach [3], [4].

Accurate clinical interpretation of VFSS is of paramount
importance for detecting penetration-aspiration (i.e., airway
invasion), as well as for planning appropriate interventions,
such as the use of thickened drinks and texture-modified
foods to reduce the risk of choking and aspiration [5]. To
this end, standardized protocols have been developed and
validated to detect physiological parameters related to the
swallow and help clinicians with the decisions [6]. One
of the most recent methods is the Analysis of Swallowing
Physiology: Events, Kinematics and Timing (ASPEKT) [7],
which provides clinicians with a rich and modular approach
for rating VFSS data by detecting temporal, kinematic, and
geometrical parameters pertaining to swallowing physiology.

Although standardized rating protocols have been heavily
used for the assessment of dysphagia [6], there is an urgent
need for video analysis algorithms that are able, at least
in part, to automate VFSS rating, as the bulk of the work
still relies on the manual annotation of temporal events
and anatomical landmarks [7]. In fact, the vast amount
of manual labour results in analysis times that are hugely
disproportionate to the relatively short duration of the video
clips (usually a few seconds).

With the advent of deep learning, novel and accurate
algorithms for video analysis have been proposed to solve
problems in the field of swallowing science. Deep learning
has been applied to automatically detect and track the hyoid
bone in VFSS [8], [9], to segment the bolus contour during
the swallow [10], and to identify the pharyngeal phase in the
swallow recordings [4], [11], [12]. The latter application is
of particular interest, as the pharyngeal phase constitutes the
time interval that contains most of the clinical parameters
of interest [7]. Specifically, two types of video classification
approaches have been proposed so far: 3D convolution neural
networks (3DCNN) for classifying sliding temporal windows
of consecutive frames as belonging either to the pharyngeal
or non-pharyngeal phase [4], [11], and the use of frame-
by-frame approaches that classify single video frames with
2DCNNs [12]. To the best of our knowledge, no previous
studies have compared these two approaches on the same
dataset. Nor has it been indicated how small the detection
error should be to be considered acceptable for a clinical
application. This information is essential to develop and
deploy novel algorithms for the automatic interpretation of
VFSS data.

Hence, the objectives of this paper are: 1) to determine the
effect of temporal information on the automatic detection
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of the pharyngeal phase in VFSS, specifically comparing
2DCNN- and 3DCNN-based approaches for detecting this
phase in bolus-level VFSS clips (i.e., is the cost of using a
3DCNN justified by higher performance?); and 2) to compare
the accuracy in detecting these events with manual inter-rater
agreement, to understand how far we are from deploying
such video-based approaches into real-world applications
(i.e., is automated detection of the pharyngeal phase as
accurate as the clinical gold-standard?).

II. MATERIALS AND METHODS

A. Data Collection

The study was approved by the Research Ethics Boards
at UHN – Toronto Rehabilitation Institute. All participants
signed informed consent according to the requirements of the
Declaration of Helsinki. Seventy-eight healthy participants
(39 male, 39 female, mean age 50.3 ± 19.0 years old) with
no history of swallowing, motor speech, gastroesophageal, or
neurological disorders were included in the study. Twenty-
seven low-concentration barium (20% w/v) stimuli were
prepared and administered to each participant. Stimuli were
prepared using bottled water and powdered barium sulfate
(Bracco Diagnostics E-Z-PAQUE, 96% w/w) in five different
consistencies: thin, slightly thick, mildly thick, moderately
thick and extremely thick [5]. With the exception of thin
boluses, two types of thickeners (Nestlé Resource ThickenUp
Clear and Nestlé Resource ThickenUp) were used. For each
combination of consistency and thickener, three boluses
were swallowed by each participant. VFSS recordings were
conducted in lateral projection and stored on a KayPENTAX
Digital Swallow Workstation at 30 frames per per second and
720×480 pixel resolution.

B. Clinical rating and pre-processing

VFSS recordings were manually split into bolus level
videos and randomly assigned to two raters, who identified
the two time points that delimited the pharyngeal phase,
namely the bolus pass mandible (BPM) frame and the upper
esophageal sphincter closure (UESC) frame (see Figure 1).
The BPM frame is defined as “the first frame where the
leading edge of the bolus touches or crosses the shadow
of the ramus of the mandible”, whereas the UESC frame
is “the first frame where the UES achieves closure behind
the bolus tail”. Any discrepancies were resolved through a
consensus meeting with a third rater [7]. Resolved values for
BPM and UESC frames were considered as the ground truth
for training and testing the deep learning algorithms.

Only clips with single-swallow boluses were considered
for this study. Additionally, video-clips whose resolved BPM
and UESC frames were deemed unratable by the raters (i.e.,
due to occluded images, poor quality, etc.) were excluded.
The final dataset used for the analysis was composed of
1245 video clips from 59 participants. To measure inter-rater
agreement, we used the Pearson’s correlation coefficient (r)
between the two raters (prior to discrepancy resolution) and
the percentage of video clips for which disagreement was less

than or equal to three frames (P3). These values indicated
excellent inter-rater agreement (Table I).

Each video clip was split into separate grayscale frames,
obtaining a dataset of 185,025 frames. A squared region
of interest that included the main anatomical regions was
cropped from the center of the frame and resized to 224×224
pixels. Finally, a contrast-limited adaptive histogram equal-
ization was performed to improve contrast of the anatomical
structures without amplifying the noise [14]. Sample frames
extracted from our dataset are shown in Figure 1.

TABLE I
INTER-RATER AGREEMENT CALCULATED ON THE DATASET OF 1245

VIDEO CLIPS.

r P3 (%)
BPM frame 0.951 89.08

UESC frame 0.996 92.69

C. Automated Video Segmentation

Similar to [4], [11], [12], the problem of detecting the
pharyngeal phase was tackled as a binary classification task.
To automatically detect the two events of interest (i.e., BPM
and UESC frames), all frames of each video clip were
assigned to one of two classes, namely the pharyngeal phase
(PP) class and the non-pharyngeal phase (NP) class, which
included frames from the oral and esophageal phases. Frames
were assigned to the PP class if they were between BPM
and UESC frames, otherwise they were labelled as NP. The
dataset was randomly split into training (752 clips from 38
participants for a total of 109,203 frames), validation (201
clips from 9 participants, equal to 29,491 frames), and test
(292 clips from 12 participants equal to 47,331 frames) sets.

In order to investigate the effect of time in the detection
of BPM and UESC frames, we conducted three tests using
three different CNNs.

1) Test 1 - 2DCNN with 1 frame as input: In this test,
each grayscale frame was considered independent from the
preceding and subsequent frames, as proposed by Lee et al.
[12]. We designed a custom 2DCNN with 4 convolutional
layers, 2 fully connected layers with ReLU activation, and a
softmax layer with 2 output units (see Table II). The size of
convolutional kernel was 3×3 with ReLU activation, whereas
maximum pooling was performed over 2×2 windows with
stride equal to 2.

2) Test 2 - 2DCNN with 3 frames as input: In this test
we used the same architecture developed for Test 1, with
the only difference that the input was composed of stacks of
3 consecutive frames. This temporal window was advanced
1 frame at a time, thus generating an overlap of 2 frames
between two consecutive time windows.

3) Test 3 - 3DCNN with 8 frames as input: In this test, the
input was composed of sequences of 8 consecutive frames
that were passed to a custom 3DCNN. The temporal window
was advanced 4 frames at a time (i.e., 50% overlap between
two consecutive samples). The architecture is similar to the
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Fig. 1. Example of VFSS clip with sample frames extracted from the three phases of swallowing. The bolus is highlighted in yellow.

previous one, with the only difference that all 2D convo-
lutional and max-pooling layers were transformed into 3D
convolutions and 3D max-pooling layers (i.e. convolutional
kernel size: 3×3×3; max pooling volume: 2×2×2). The
fully connected and output layers remained the same as with
the other two architectures (see Table II).

TABLE II
CNN ARCHITECTURES USED IN THE EXPERIMENTS. THE OUTPUT SHAPE

OF EACH LAYER IS REPORTED IN PARENTHESES (CONV:
CONVOLUTIONAL LAYERS; MAX-POOL: MAX POOLING LAYERS; FC:

FULLY CONNECTED LAYERS).

2DCNN 2DCNN 3DCNN
1 frame 3 frames 8 frames

Input Input Input
(224,224,1) (224,224,3) (8,224,224,1)

2D conv (224,224,4) 3D conv (8,224,224,4)
2D conv (224,224,4) 3D conv (8,224,224,4)

2D max-pool 3D max-pool
(112,112,4) (4,112,112,4)

2D conv (112,112,8) 3D conv (4,112,112,8)
2D conv (112,112,8) 3D conv (4,112,112,8)

2D max-pool 3D max-pool
(56,56,8) (2,56,56,8)

2D conv (56,56,16) 3D conv (2,56,56,16)
2D conv (56,56,16) 3D conv (2,56,56,16)

2D max-pool 3D max-pool
(28,28,16) (1,28,28,16)

2D conv (28,28,32) 3D conv (1,28,28,32)
2D conv (28,28,32) 3D conv (1,28,28,32)

2D max-pool 3D max-pool
(14,14,32) (1,14,14,32)
FC (128) FC (128)
FC (64) FC (64)

Softmax (2) Softmax (2)

4) Network Training and Hyperparameters: Each archi-
tecture was trained from scratch for 100 epochs. Classi-
fication accuracy and loss obtained on the validation set
were used to determine the best training hyperparameters.
Specifically, for the 2DCNNs (Tests 1 and 2) the initial
learning rate was set to 1e-3 and halved every 5 epochs, using
a batch size of 8. The 3DCNN (Test 3) was trained using
an initial learning rate of 1e-5 and halved every 10 epochs,

with batch size of 4. For all models we used categorical
cross-entropy loss and ADAM optimizer.

5) Performance Evaluation: For each bolus-level clip,
the BPM frame was determined as the first frame with
predicted class equal to PP that was followed by at least
3 consecutive PP frames, whereas the UESC frame was
identified as the last PP frame that was preceded by at least
3 consecutive PP frames. This choice made the estimation
robust to the presence of short and isolated windows of PP
frames. All architectures were compared on the test set using
the percentage of video-clips for which the BPM and UESC
frames were predicted within 3 frames of error from the
ground truth (P3BPM and P3UESC). Moreover, we used as
a baseline a Naı̈ve model that used the average values of
BPM and UESC frames in the training set – normalized with
respect to the video duration – to predict the BPM and UESC
frames on the test set.

III. RESULTS
Results are reported in Table III. All three CNNs yielded

performance well above the baseline results obtained with
the Naı̈ve model. In general, the best detection results were
obtained using the 2DCNN architecture with 3 consecutive
frames as input. Performance in detecting the BPM frame
was below the inter-rater agreement for all three models,
whereas the 2DCNN approaches for the UESC frame pro-
duced values of P3UESC (Tests 1 and 2) higher than the inter-
rater agreement obtained on the test set.

TABLE III
PHARYNGEAL PHASE DETECTION RESULTS OBTAINED ON THE TEST SET

(P3tot : PERCENTAGE OF VIDEOS FOR WHICH BOTH EVENTS – BPM AND

UESC FRAMES – WERE PREDICTED WITH LESS THAN 3 FRAMES OF

ERROR).

P3tot (%) P3BPM (%) P3UESC (%)
Naı̈ve model 14.04 13.70 14.38

Test1 (2DCNN–1 frame) 83.39 75.34 91.44
Test2 (2DCNN–3 frames) 87.16 81.16 93.15
Test3 (3DCNN–8 frames) 60.62 67.12 63.87

Inter-rater agreement
obtained on the test set 88.36 86.99 89.73
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IV. DISCUSSION
We demonstrated that CNN-based approaches are able

to detect the BPM and UESC frames in VFSS clips with
high accuracy. Our work adds further evidence to the recent
results obtained by Lee et al. [4], [11], [12]. Specifically,
our results suggest that the temporal information used as
input to the CNNs has an impact on the performance of
pharyngeal phase detection. The highest detection accuracy
was obtained with a 2DCNN architecture with 3 consecutive
frames as input. This strategy outperformed both the frame-
by-frame approach (i.e., 2DCNN with 1 frame as input), and
the 3DCNN-based method with 8 frames as input. Thus, the
temporal extension of the analysis window might have an
adverse effect on classification results. Specifically, using 8-
frame analysis windows resulted in a loss of performance in
capturing the right instants corresponding to the beginning
and end of the pharyngeal phase (i.e., BPM and UESC
frames, respectively). This result is likely due to the fact
that the two events of interest happen within a short time
interval, which is usually shorter than 1 second. Thus, the
use of 2DCNNs, as recently proposed by Lee et al. [12],
would be preferable for this application.

Looking at the P3tot values (Table III), we found that the
Test 2 yielded results very close to the human inter-rater
agreement (87.16% vs 88.36%). Upon closer inspection, we
can see that both 2DCNN approaches (Tests 1 and 2) were
able to detect the UESC frame with accuracy higher than
the inter-rater agreement. Thus, at least for the UESC frame
detection, an automatic video segmentation algorithm is as
accurate as the trained human observer. The same cannot be
said for the BPM frame, as the best P3BPM value – obtained
during Test 2 – is below the inter-rater agreement (81.16%
vs 86.99%). This lower performance can be explained by
the fact that in some cases the BPM frame is identified
in correspondence with premature spill of bolus into the
pharynx, which might not be captured accurately by the
automated approach. Thus, additional data and results are
needed, in order to look more closely at this issue and
improve BPM frame detection.

The main limitation of this study is the inclusion of only
healthy participants. Future work will focus on expanding the
dataset and validating the algorithm on individuals with swal-
lowing problems, for example due to degenerative diseases or
post-stroke. Moreover, an interesting development will be the
comparison of our custom CNNs with popular architectures
(e.g., VGG16, ResNets, Inceptions) [13], as well as the
implementation of recurrent layers [14] for improving the
temporal segmentation of VFSS clips.

V. CONCLUSIONS
For the first time, we compared 2DCNN and 3DCNN

architectures for detecting the pharyngeal phase in VFSS,
demonstrating that 2DCNNs with short temporal windows
as input (i.e., 3 frames) provide better results than 3DCNNs
or frame-by-frame approaches. Our results demonstrated that
the automatic prediction of the pharyngeal phase can be
performed with accuracy very close to the gold standard

(i.e., trained clinical rater). However, further developments
are needed to improve the detection performance as far as
the beginning of this phase (i.e., BPM frame) is concerned.
We are confident that with the expansion of the dataset and
the implementation of other deep learning architectures (e.g.,
more powerful CNNs and recurrent neural networks), we will
soon be able to translate this technology into clinical practice,
to support clinicians with the manual rating of VFSS data.
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