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Abstract— Detecting depression on its early stages helps pre-
venting the onset of severe depressive episodes. In this study, we
propose an automatic classification pipeline to detect subclinical
depression (i.e., dysphoria) through the electroencephalography
(EEG) signal. To this aim, we recorded the EEG signals in
resting condition from 26 female participants with dysphoria
and 38 female controls. The EEG signals were processed to
extract several spectral and functional connectivity features to
feed a nonlinear Support Vector Machine (SVM) classifier em-
bedded with a Recursive Feature Elimination (RFE) algorithm.
Our recognition pipeline obtained a maximum classification
accuracy of 83.91% in recognizing dysphoria patients with a
combination of connectivity and spectral measures. Moreover,
an accuracy of 76.11% was achieved with only the 4 most
informative functional connections, suggesting a central role
of cortical connectivity in the theta band for early depression
recognition. The present study can facilitate the diagnosis of
subclinical conditions of depression and may provide reliable
indicators of depression for the clinical community.

I. INTRODUCTION

Depression severely affects both psychological and physi-
ological functioning and has been defined as a leading cause
of disease burden worldwide [1]. Accordingly, an accurate
and early identification would be crucial to avoid treatment
failure and symptoms exacerbation.

To date, in the clinical practice, a formal diagnosis of
a mental health condition, such as depression, is usually
supported by the use of semi-structured diagnostic interviews
and validated questionnaires. However, these methods suffer
from subjectivity biases that may result in a substantial
reduction of diagnostic accuracy [2]. Given these premises,
integrating neurophysiological measures within the standard-
ized diagnostic screening procedure could have a significant
impact on its early and objective detection and treatment.

In recent years, electroencephalogram (EEG) has been
used as a noninvasive and inexpensive method to study
depression-related neurophysiological changes. Depression
has been linked to distinct resting-state power spectrum and
functional connectivity dynamics, as compared to healthy
individuals [3], [4]. Numerous studies have linked depression
to higher resting-state alpha and theta frequency power in
posterior sites as compared to controls [5], [6]. Moreover,
recent evidence suggests that depression-related pathophys-
iological changes occur across networks of brain regions
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rather than within single clusters [7]. Particularly, increased
functional connectivity within the theta and alpha frequency
bands in a distributed network of anterior and poster brain
regions has been reported in individuals with depression as
compared to controls [3], [8].
Aiming for objective depression identification, machine
learning models, e.g., back propagation neural network [9]
and random forest classifier [10], have been applied to fea-
tures extracted from the EEG data [11], [12]. A combination
of spectral and nonlinear features has shown 87% of accuracy
in discriminating 86 patients with depression from 92 healthy
matched controls with k-nearest neighbor classifier [13]. Fur-
thermore, functional connectivity measures estimated from
different algorithms (e.g., synchronization likelihood [14],
coherence measure [15] and phase lagging index [16]) were
also able to classify individuals with depression from healthy
controls with good performance.
Although, the aforementioned studies achieved promising
results in automatically recognizing individuals already suf-
fering from major depressive symptoms, more attention
should be focused on advancing research for the early
recognition and prevention of depression. A promising ap-
proach to identify individuals at risk of developing major
depression is studying the subclinical depressive symptoms.
Particularly, dysphoria, or subclinical depression, refers to
a condition characterized by elevated depressive symptoms
without meeting the criteria for a formal diagnosis of major
depression according to the number, duration and impact on
the functioning of symptoms [17].
In our earlier study [8], we have found higher functional
connectivity within alpha and theta bands in individuals
with dysphoria compared to healthy controls. Yet, to date,
attempts for designing an automated method to classify the
EEG dynamics of dysphoria population from healthy control
group are lacking in the literature.
In this study, we propose an automatic approach to dis-
tinguish subclinical depression from healthy controls using
EEG signals from 26 subjects with dysphoria and 38 healthy
control group. As an extension to our previous work [8], we
investigated features from spectral domain and brain connec-
tivity from seven selected clusters of brain regions within
the alpha and theta bands. We applied the support vector
machine (SVM) classifier embedded with Recursive Feature
Elimination (RFE) for the classification of the two groups
[18]. We provide classification results in terms of sensitivity,
specificity and accuracy of the recognition conducted with
the inclusion of various feature sets to highlight the specific
features leading to the highest recognition result.
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II. MATERIALS AND METHODS

A. Subjects Recruitment, Experimental protocol and Acqui-
sition set-up

A total of 64 female undergraduate students (average
age of 22) completed a paper-and-pencil version of the
Beck Depression Inventory-II [19]. Given the high female
preponderance in dysphoria patients [20] and the stronger
association of spectral changes and depression in women
[21], only female participants were recruited.

Subjects with dysphoria were identified as those who
scored at least 12 on the BDI-II test and had at least
two current depressive symptoms for at least two weeks
without meeting the diagnostic criteria for major depression,
dysthymia or bipolar disorder as assessed by the mood
episode module (module A) of the SCID-I [22]. Participants
scoring equal to or less than 9 on the BDI-II, without
current depressive symptoms as assessed by the SCID-I,
were included in the healthy control group. As a result, the
final dataset included 38 healthy control participants and 26
participants with dysphoria.

Participants were asked not to drink alcohol the day before
the session and to avoid coffee and nicotine on the day of the
experiment. None of the participants took antidepressants.
Upon arrival at the laboratory, participants were seated in a
quiet, dimly lit room and their EEG activity was acquired
under eyes-open resting condition over a 4-minute period of
each participant. They were asked to gaze at a fixation cross
to minimize the eye movements and ocular artifacts. The
EEG electrodes were placed on the scalp at standard position
from 32 scalp positions using an Electro-Cap (Electrocap,
Inc.) with tin electrodes. The signals were acquired with the
sampling frequency of 500 Hz.

All participants gave their informed consent before being
enrolled in the study. The study was approved by the local
Ethics Committee, University of Padua (prot. No. 1407). The
present study was conducted within an extensive research
project, and most of the participants’ data have also been
described in previous publications [8], [23]–[26].

B. Pattern recognition: Signal Processing, Feature extrac-
tion, and Classification

Signal processing: The data was filtered using a band-
pass Butterworth filter between 0.5 Hz and 45 Hz. Then,
principal component analysis was applied to identify the bad
channels. The components associated with eye-blinks were
identified by visual inspection and removed after applying
the independent component analysis [27]. At the end, the
signals were visually inspected to remove all the remaining
artifacts related to movement or other noise sources [27].

To reduce the data dimensionality and mitigate the risk
of over-fitting in further analysis, we grouped the 30 EEG
channels (the two mastoids were excluded from the analysis)
into seven clusters which were our regions of interest as
following: Cluster 1: [F7, FP1, F3, FT7, FC3]; Cluster 2:
[F8, FP2, F4, FT8, FC4]; Cluster 3 : [T3, C3]; Cluster 4:
[T4, C4]; Cluster 5: [P7, P3, O1, CP3, TP7]; Cluster 6: [P8,
P4, O2, TP8, CP4]; Cluster 7: [FZ, CZ, PZ, FCZ, CPZ, OZ].

We averaged among the EEG channels in each cluster to
obtain a new time series that represents the EEG information
of that particular cluster related to our regions of interest.

Feature extraction: EEG features were extracted by
means of spectral analysis, to quantify the brain activity, and
functional connectivity analysis. The EEG power spectral
density was derived by computing the Welch periodogram
for each cluster time series on window segments of 4 seconds
with 75% of overlap [28]. The resulting time-frequency
spectral representation of the time series in each of the 7
regions for each subject was integrated within the theta (4-7
Hz) and the alpha (8-12 Hz) bands [29].

We applied a functional connectivity analysis to estimate
the brain connectivity by calculating the neural synchrony
between each pair of channels among the 7 selected regions
for each subject. Particularly, we applied the mean phase co-
herence (MPC) index to quantify the phase synchronization
between two time series [30]. The MPC index between two
time series (x(t),y(t)) is defined as follows:

MPC2 = E[cos(∆(φ))]2 + E[sin(∆(φ))]2 (1)

where E is the expectation operator and (∆(φ)) is the relative
phase difference obtained by subtracting the instantaneous
phases of the two time series which are calculated from the
analytical signal using the Hilbert transform [31]. In case of
high phase synchronization between the EEG clusters, the
MPC value is close to 1 while it is close to zero in case of
weak synchronization [15].

We group the features obtained from the spectral and con-
nectivity quantification of EEG channels into three feature
sets.

• Feature Set 1 = EEGspectral = [θCi
, αCi

]
• Feature Set 2 = EEGmpc = [θCi,Cj

, αCi,Cj
]

• Feature Set 3 = [EEGspectral, EEGmpc].

where i, j = 1, . . . , N and N represents the number of
clusters.

Classification: The classification aimed at discriminating
between the individuals with dysphoria and the healthy con-
trol participants. Since the dataset contained a large number
of features compared to the number of observations, it is
important to reduce the dimensionality of the dataset by ap-
plying a feature selection algorithm. Accordingly, we applied
a nonlinear SVM model with radial basis kernel along with
an embedded feature reduction strategy (i.e., RFE algorithm).
The SVM-RFE ranks the features by removing iteratively
the feature that has the least impact on the SVM weight-
vector norm. The result is the identification and selection of
a subset of features that optimizes the performance of the
SVM classifier [15]. The RFE is considered an embedded
feature selection method, because the search of the optimal
subset is built into the classifier construction and, therefore, is
part of the learning process of the classifier. We specifically
chose an embedded feature selection method because they
have been proven to provide the best performance compared
to other strategies due to their reduced computational cost
and reduced over-fitting risk [32].

In addition, to perform an unbiased performance evalu-
ation, we applied the Leave-One-Subject-Out (LOSO) vali-
dation scheme as a cross validation technique. Through this
technique, having N number of subjects, at each iteration
the model is trained on feature set from N − 1 subjects and
tested on the feature sets from the left-out subject.
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TABLE I: Ranked feature list using each feature set for
recognition of dysphoria group from healthy control.

Rank Feature in
Feature set 1

Feature in
Feature set 2

Feature in
Feature set 3

1 θC1 θC1,C4 θC3,C2
2 θC6 αC4,C2 αC4,C2
3 αC6 θC3,C2 θC5,C4
4 θC7 θC7,C4 θC4,C1
5 αC4 θC4
6 θC5 θC1
7 αC1 αC5,C4
8 αC2 θC3
9 θC2 αC4,C1
10 αC5

(a) Feature set 1

(b) Feature set 2

(c) Feature set 3

Fig. 1: Classification results in terms of accuracy (%) on
validation set as function of feature ranking selection im-
plemented through the SVM-RFE-LOSO classifier using a)
Feature set 1 b) Feature set 2 and c) Feature set 3. The x
axis represents the number of features in each feature set.

TABLE II: Confusion matrix of dysphoria versus control
classification using spectral features.

Feature set 1 (spectral) Healthy group Dysphoria group
Healthy group 76.92 % 28.95 %
Dysphoria group 23.08 % 71.05 %

Recognition accuracy: 73.99 %

TABLE III: Confusion matrix of dysphoria versus control
classification using connectivity features.

Feature set 2 (connectivity) Healthy group Dysphoria group
Healthy group 65.38 % 13.16 %
Dysphoria group 34.62 % 86.84 %

Recognition accuracy: 76.11 %

TABLE IV: Confusion matrix of dysphoria versus control
classification using spectral and connectivity features.

Feature set 3 (all) Healthy group Dysphoria group
Healthy group 73.08 % 5.26 %
Dysphoria group 26.92 % 94.74 %

Recognition accuracy: 83.91 %

III. RESULTS

In this section classification results for discriminating in-
dividuals with dysphoria from healthy controls are reported.
The classification procedure is performed on the three feature
sets defined in Section II-B. The recognition accuracy as a
function of number of features from Feature set 1, Feature
set 2 and Feature set 3 are depicted in Figures 1a, 1b and 1c,
respectively. Table I shows the ranking of the selected feature
subset that led to the maximum performance considering
each feature set. Moreover, the confusion matrices associated
with the best recognition accuracy from each feature set are
shown in Tables II, III and IV, respectively. The diagonal
values of this matrix corresponds to the sensitivity and
specificity of the classification.

The results show that recognition accuracy of 73.99 %
(sensitivity=76.92% and specificity=71.05%) and 76.11 %
(sensitivity=65.38% and specificity=86.84%) is achieved us-
ing only features from spectral and connectivity analysis,
respectively.

However, the highest accuracy (83.91% (sensitiv-
ity=73.08% and specificity=94.74%) is obtained while con-
sidering all the features present in Feature set 3. This
accuracy is obtained through 9 features comprising of MPC
indices in theta band between C3-C2;C5-C4;C4-C1 and in
alpha band between C4-C2;C5-C4;C4-C1 as well as power
spectrum estimates of C1,C3,C4 regions within theta band.
The best recognition result using Feature set 1 is obtained
through 10 out of 14 features while only 4 features in Feature
set 2 contributed to the best recognition.

IV. DISCUSSIONS AND CONCLUSIONS

In the present study, we proposed a pattern recognition
pipeline for recognizing the neurophysiological patterns of
dysphoria from the resting state EEG activity. Spectral and
functional connectivity estimates were evaluated both sepa-
rately and in a combined feature sets for both theta and alpha
frequency bands.

The choice of the SVM classifier embedded with RFE
feature reduction is, firstly, to reduce the data structure
complexity to avoid the risk of over-fitting that rises while
training the classifier with a relatively large feature set and,
secondly, to identify the most influential feature subset that
achieves the maximum classification performance. Moreover,
the LOSO validation scheme allows building an unbiased
subject-independent classification.

The results show that the best classification performance
(83.91% of accuracy) is obtained while combining the spec-
tral and functional connectivity measures (Feature Set 3).
This confirms the importance of different sources of infor-
mation (spectral and connectivity analyses) for quantifying
the neural dynamics. On the other hand, it is important
to consider not only the estimated accuracy but also the
generalization performance. This refers to the performance
on out-of-sample data of the models learned by the learning
algorithm. In this regard, the model with the best trade-
off between accuracy and robustness is probably obtained
considering only the functional connectivity features. Indeed,
in Feature Set 2, only 4 features contributed to the highest
classification performance achieving 76% of accuracy. In-
stead, the spectral feature set (Feature Set 1) does not offer
a great performance (73.99% of accuracy) considering the

2052



number of selected features (9 out of 14). Of note, both
Feature Set 2 and Feature Set 3 encompassed functional
connectivity within theta frequency band in a fronto-centro
parietal network as a major contributor to the robustness of
the model. This is in line with previous studies showing se-
lective changes within the theta frequency band in individuals
with depressive symptoms [3], [5], [8], and possibly indicate
functional impairment in the limbic system of individuals
with dysphoria, which has been shown to be related mostly
to theta frequency band in the human cortex [33]. Hence,
the present results might indicate that functional connectivity
within theta frequency band is an independent and robust
indicator of dysphoria, as also supported by our previous
work [8].

In conclusion, this study tackles the challenge of early
identification of depression by suggesting an automatic way
to effectively identify dysphoria through neurophysiological
measures. Our results suggests that a combination of both
EEG spectral and, mainly, connectivity measures within the
theta frequency band may provide important information
for early identification of depression. In future studies, we
aim to increase the number of subjects and explore other
connectivity metrics for quantifying causal interactions and
cortical sources associated with dysphoria, expanding the
research also towards emotional tasks.
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