
Multi-modal Broad Learning System for Medical Image and Text-based
Classification

Yanhong Zhou1, Jie Du1*, Kai Guan 1, Tianfu Wang 1

Abstract— Automatic classification of medical images plays
an essential role in computer-aided diagnosis. However, the
medical images arise from the small number of available data
and the improvement of existing data-enhancement methods
are limited. In order to fulfil this demand, a Multi-Modal
Broad Learning System (M2-BLS) is proposed, which has two
subnetworks for simultaneous learning of both medical images
and the corresponding radiology reports. M2-BLS provides two
advantages: i) our M2-BLS has closed-form solution and avoids
iterative training, once the image feature is available; ii) benefit
from the simultaneous learning of both image and text data,
our M2-BLS achieves high accuracy for medical classification.
Experimental results on the publicly available datasets IU X-
RAY and PEIR GROSS_895 show that our M2-BLS highly
improves the classification performance, compared to SOTA
deep models that learn single-type of data information only.

Index Terms— Medical Classification, Radiology Report,
Simultaneous Learning, Broad Learning System

I. INTRODUCTION

Effectively classifying medical images play an essential
role in assisting clinical care and treatment due to doctors
need to exam numerous medical images during the process
of disease diagnosis [1],[2]. For example, radiologists read
images and write textual radiology reports (e.g., Fig.1) [3] to
record the findings regarding to every area of the chest. Based
on these findings, physicians then give the corresponding
diagnosis results accurately.

Comparied with hand-designed method, the convolutional
neural network (CNN) model was designed for image
processing [4]. The well-known CNN-based deep models
include VGG [5], ResNet [6], DenseNet [7], and so on.
However, in order to construct a generalized deep model,
huge amount of training data are usually very necessary
due to their overfull model parameters, resulting to complex
and time-consuming training process. Whereas the amount
of available training data is usually very limited in medical
image classification area. That is because the medical
images cannot be collected from website (like nature
images) to construct a large dataset and the medical experts
have rare time to annotate medical images. Under these
small datasets, these CNN-based deep models will suffer
from overfitting [8]. In order to enrich the medical images,
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Fig. 1: An exemple of radiology report from the IU X-Ray dataset.
The image on the left and the corresponding radiology report on
the right. The Comparison section contains previous information
about the patient (e.g., preceding medical exams); The Indication
section contains reasons of examination(e.g., age); The Findings list
the radiology observations. The Label section list the label of the
image.

various data-enhancement methods are adopted [9], [10],
such as rotations, flips, translations. However, these synthetic
images are similar to the primal one and the improvements
by using these enhancement methods are limited [11].

In this paper, we innovatively proposed to simultaneously
learn both image and text information of medical data to
overcome small data issue. In the literature, in order to learn
text information, Recurrent Neural network (RNN) [12] is
commonly used, which can recurrently learn words from text
data but fails on long-term dependencies; LSTM [13] is an
improved version of RNN, which has a more complicated
structure inside, can select and adjust the transmitted
information and keep long-term dependencies. However,
RNN or LSTM mechanism only learn sequence information
of words but lack word importance that is also very
important for text classification [14]. Recently, Recurrent
Board Learning System (R-BLS) [15] is proposed, which
provides the way of simultaneous learning both sequence
information and word importance in one network. Although
R-BLS learns sufficient text information, its network cannot
directly extract image information.

In this work, we proposed a Multi-Modal Broad Learning
System (M2-BLS) to simultaneously learn information from
both text and image data for accurate disease diagnosis.
Our M2-BLS contains two subnetworks: one extracts text
information including sequence information and word
importance; another extracts image information. These
information are then used to analytically determine the
output. The main contributions of this work are summarized
as follows:

i) Our M2-BLS enriches the medical data by taking text
data information into consideration as well as image data
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Fig. 2: The framework of the proposed M2-BLS.

information;
ii) Our M2-BLS has a closed-form solution that avoids the

iterative training and shows high training efficiency;
iii) Through the simultaneous learning of both image and

text data information, our M2-BLS can significantly
improve the testing accuracy, compared to SOTA
methods learning single-type of data information.

II. PROPOSED METHOD

A. Image-based Subnetwork:

In order to extract image information, CNN-based deep
model is firstly used to decode the 2d input image into 1d
high-level feature representation F (i.e., the output of the
fully connected layer). In this work, DenseNet is adopted
due to its high feature extraction ability [16], as shown in
Fig.2. After the training of DenseNet under image data only,
F is then enhanced by the following non-linear operation as
in Board Learning System (BLS) [17],

Fimg = g
(
Fαf + βf

)
(1)

Where g is an activation function, αf and βf are also
randomly generated as in original BLS.

However, as detailed in Section I, the medical data
are usually too small to obtain a generalized CNN-based
deep model and the feature representation Fimg may be
not discriminant enough for disease diagnosis. Hence the
feature representation Fimg is then concatenated with
text information Ftext (detailed below) to improve the
discriminant of features.

B. Text-based Subnetwork:

1) Learning sequence information: Given N training data
{xi,yi} , i = 1 to N. Assume xip ∈ Rd (p = 1 to k) is a
mapped vector representation under word2vec. The matrix
representation of the xip ∈ Rd word in all N samples is
Xp=

[
x1p, x

2
p,..., x

i
p,..., x

N
p

]T ∈ RN×d , Y =
[
yi
]
∈ RN×m

is the label matrix for all N samples. Similar to RNN, every

Zp is determined by both current input Xp and the previous
memory Zp−1 ,

Zp = f (Xpα
m + Zp−1U+ βm) (2)

Where f is an activation function such as sigmoid, and the
weights αm ,U and bias βm are randomly generated (as in
Broad Learning System [17]).

2) Learning word importance: In order to effectively
learn word importance, in the enhancement nodes (illustrated
in Fig. 2), every words Xp are used as input instead
of memory set Zp , each enhancement node Hp is then
calculated by

Hp = g (Xpα
o + βo) (3)

Where g is an activation function as well, weight αo and
bias βo are also randomly generated.

In this work, Eq.(2) is used to obtain sequence information
Eq.(3) and is used to calculate each word information as in
R-BLS. Hence, Ftext is obtained by,

Ftext = [Zk|H1, · · · ,Hk] (4)

Where k is the number of words in the radiology report.
3) Output Weight: In Fig.3, Wf , Wz , and Wh

respectively represents the importance of image information,
sequence information and word importance for final
disease diagnosis. As in original BLS, Wf , Wz and
Wh are not computed separately but these weights are
firstly concatenated (i.e.,W = [Wf |Wz|Wh]) and then
determined by the ridge regression approximation of pseudo
inverse of (i.e.,

[
Fimg|Zk|H1, · · · ,Hk

]
). Under this way,

the iterative update of output weight W is eliminated and
W can be calculated by a closed-form solution, which
significantly reduces the training time ,

W = A†Y

=
(
ATA

)−1ATY
(5)
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where

A =
[
Fimg|Zk|H1, · · · ,Hk

]
(6)

By substituting Eq.(6) into Eq.(5)

W =
[
Fimg|Zk|H1, · · · ,Hk

]†
Y

=
([

Fimg|Zk|H1, · · · ,Hk

]T [
Fimg|Zk|H1, · · · ,Hk

])−1
[
Fimg|Zk|H1, · · · ,Hk

]T
Y

(7)

III. EXPERIMENTS AND RESULTS

A. Data description

IU X-RAY 1

We have conducted experiments on the publicly available
dataset called the Indiana University Chest X-Ray Collection
(IU X-Ray) [18]. The dataset consists of 7470 X-rays of size
512 × 624, among which 5177 X-rays are used for training
and 1294 X-rays for testing after deleting the images that
are not associated with the daignostic report (detailed in
Table I). Each reports consisits of four parts: Impression,
Indication, Findings, and Label. In this paper, we treat
the contents in Findings as the text information and the
Medical Text indexer (MIT) annotated label as the predicted.

PEIR GROSS_895 2

The Pathology Education Informational Resource (PEIR)
digital library is a public access image database in medical
education [19]. We collected 895 images and corresponding
text descriptions from it. The dataset is split to 716 train and
179 test instances (detailed in Table I).

TABLE I: Data properties of compared datasets.

Dataset Total Num_class Training Testing
IU-XRAY 6471 2 5177 1294
PEIR-GROSS_895 895 2 716 179

B. Implementation details

Before experiments, the dataset IU X-RAY is
preprocessed: first, we analysis the report and extract
the Findings content and their label corresponding to each
patient. Then, the X-rays pictures and id of the patients
without Findings content are deleted. For the dataset PEIR
GROSS_895, first we collected 895 pictures and their
corresponding text reports from the official website. In
addition, all raw data in text form are also preprocessed to
become the numeric vector representations. In detail, the
trainWordEmbedding function in Matlab environment (Text
Analytics Toolbox) is used to train a word embedding.
Then with the trained word embedding, word2vec function
is used to map words to vectors. Since the samples or
sentences in the radiology report are of different lengths,
every sentence is practically truncated or padded to a fixed
length of L words. Last, send the text and images into two

1https://openi.nlm.nih.gov/faq
2https://peir.path.uab.edu/library/index.php?/category/106

sub-networks for training. For training ,batchsize=1 due to
hardward limitation.

C. Results

The experiments are conducted in two aspects: 1) M2-BLS
is compared with SOTA CNN based deep models in terms of
both test accuracy and training efficiency; 2) The comparison
of M2-BLS with SOTA Natural Language Processing (NLP)
methods is also conducted.

TABLE II: The comparison results of our M2-BLS with SOTA
CNN-based deep models and NLP models on dataset IU X-RAY .

Method ACC (%) Time (s)

CNN

ResNet50 65.76 10894.58
ResNet101 66.38 22280.92
DenseNet121 68.39 13223.60
DenseNet169 69.09 19993.54

NLP LSTM 84.00 359.7
R-BLS 85.70 0.61
OURS 87.56 0.87+19993.54

TABLE III: The comparison results of our M2-BLS with SOTA
CNN-based deep models and NLP models on dataset PEIR
GROSS_895.

Method ACC (%) Time (s)

CNN

ResNet50 66.67 1343.18
ResNet101 72.22 1919.82
DenseNet121 78.28 1218.11
DenseNet169 79.16 726.79

NLP LSTM 85.46 7.92
R-BLS 95.75 0.09
OURS 99.44 0.03+726.79

Fig. 3: ROC curves for the IU X-RAY dataset (left) and PEIR
GROSS_895 dataset (right).

1) Test Accuracy: As introduced in Section I, medical
data are usually very limited to construct a generalized deep
model and hence the classification accuracy may be not
satisfactory, which is also verified in our experiments. As
illustrated in Table II&III, all SOTA CNN-based deep models
get unsatisfactory classification results (about 69% on IU X-
Ray and 79% on PEIR GROSS_895). On the contrary, our
M2-BLS simultaneously learns information from both image
and text data to enhance the learned features and achieves
87.56% and 99.44% of accuracy on IU X-Ray and PEIR
GROSS_895 respectively, even though the medical image
data is a small one.

Similarly, SOTA Natural Language Processing (NLP)
methods only learn information from text data, which is
also insufficient for medical classification [20]. As illustrated
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in Table II&III, compared to LSTM and R-BLS, our M2-
BLS also achieves best performance and improves accuracy
by 3.56% and 1.86% respectively on IU X-RAY dataset
and 13.98% and 3.69% respectively on PEIR GROSS_895
dataset. Whereas, the improvement is limited compared to
that with CNN-based deep models. The main reason is that
the DenseNet169 may suffer from overfitting due to small
data issue when training and the extracted image feature is
not good enough. In the future, we would like to design
a deep model which can directly extract information from
image and simultaneously learn both image and text data.

2) Training time : Since our M2-BLS has closed-form
solution, iterative training is eliminated. Once the image
feature is extracted by deep model, our M2-BLS only
takes 0.87s and 0.03s to extract information from text data
and simultaneously learns both image and text information
to accurately classify samples (i.e., patients), which is a
significant improvement. In summary, our M2-BLS takes
additional 0.87s and 0.03s to improve the classification
accuracy of DenseNet169 by 18.47% and 20.28% on datasets
IU X-RAY and PEIR GROSS_895 respectively.

Compared to NLP models, once the image feature is ready
for learning, our M2-BLS only takes additional 0.26s (i.e.,
0.87s-0.61s) to improve the classification accuracy, compared
to R-BLS on IU X-RAY dataset. For PEIR GROSS_895,
our M2-BLS takes less training time but improves the
classification accuracy by 3.69% ,compared to R-BLS.

3) ROC curve: In Fig. 3, the ROC curve is plotted for the
seven methods. It can be seen intuitively that our method is
superior to other methods.

IV. CONCLUSION

In this paper, a Multi-Modal Broad Learning System
(M2-BLS) is proposed, which can simultaneously
learn information from both image and text data and
effectively resolve the problem of small datasets in medical
image processing. In M2-BLS, image-based subnetwork
extracts image information, while text-based subnetwork
simultaneously learns sequence information and word
importance of text data. All extracted information are then
used to analytically determine the output. Our M2-BLS has
two advantages: i) higher accuracy due to the simultaneous
learning of both image and text data, even though the data
is a small one; ii) faster training time due to its closed-form
solution. Experiments on the dataset IU X-Ray show that
our M2-BLS additionally takes only 0.87s for training
but improves the classification performance up to 21.80%.
For PEIR GROSS_895 dataset, although there are only a
few hundred of images, our M2-BLS achieves 99.44% of
accuracy, which only takes additional 0.03s for training.
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