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Abstract— The level of detail of typical numerical models
of microwave tumor ablations poses a challenge to the
development of generic, model based treatment planning tools
aiming at real time performance. The present contribution
describes a flexible and accurate approximation of the
microwave heat absorption that aims at mitigating these issues.

Clinical relevance— Biophysical models are a promising tool
towards standardization and improved planning of microwave
thermal ablation procedures.

I. INTRODUCTION
Thermal ablation cancer treatments are minimally invasive

procedures that destroy the targeted tumor through thermal
damage. Different modalities can be used, such as radiofre-
quency (RF), microwave (MW), cryoablation (cryo), see [1].
Ensuring full ablation of the tumor while sparing surrounding
risk structures can be challenging, especially for larger tu-
mors and tumors close to large blood vessels. Clinicians often
rely on experience for their planning due to the discrepancy
between observed ablations and manufacturer estimates (the
latter being often based on ex-vivo animal or phantom tests).

Biophysical models show promising results as a tool to
improve the prediction and planning of thermal ablations,
[12], [3], [10]. These models may be particularly meaningful
for MW, where measuring thermal damage during ablation is
even more complex than for other modalities, for instance be-
cause of compatibility issues with MR thermometry (MRTI).

There are numerous approaches to modeling MW abla-
tions treatments [9] and various attempts to validate these
models in ex vivo [4], [6] and in vivo settings [8]. In silico
approaches are extensively used in designing and optimizing
ablation devices [13]. In addition, in recent years there have
been attempts to employ MW models in clinical practice for
estimating treatment outcomes and informing the guidance
and planning of the treatment, e.g. [6].

In this work, we focus on the modeling of MW antennas
in the context of treatment planning. The exact geometry and
components of a MW antenna are in general unknown. They
have, however, a significant effect on the electromagnetic
field around it, and thus on the heating of tissue. This
challenge introduces many uncertainties in the modeling of
a specific MW antenna, and can hinder the development of
generic treatment planning tools that are required to be not
only patient, but also device specific.

Furthermore, even if the antenna specification is avail-
able, the components of a MW antenna are typically very
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small compared to the computational domain, and enforce
restrictions to the element size of the mesh, which translate
into relatively large computational times, becoming easily a
bottleneck for real-time treatment planning.

We propose the use of simplified formulations of the heat
source around the MW antenna, which can be constructed by
combining shapes that represent the essential features present
in an ablation device, e.g. the type of MW antenna and its
size. Such general information is typically known, even if
the details are not. The shapes are fitted to available data to
reproduce the treatment outcome expected from the ablation
device. Typical data include the ablation zones specified
by the manufacturer, literature studies and measurements,
and/or data measured in a dedicated experimental set up.
In this paper, we describe a method for estimating the
antenna specific heat source and illustrate the accuracy of
such effective formulations with numerical results.

II. MICROWAVE ABLATION MODEL
The modeling of thermal tissue damage caused by a

percutaneous microwave antenna typically involves the de-
scription of microwave propagation and absorption in tissue
(defining the heat source QMW ), a bio-heat equation (BHT)
predicting the subsequent temperature increase and a thermal
damage model translating the temperature field T(x,t) into an
indicator of tissue damage probability. For more details we
refer to [9]. In the next paragraphs, the choices made in the
present work will be briefly illustrated.

A. Microwave Absorption in Tissue

The propagation of electric field E in lossy medium can be
described by the Helmholtz equation. In frequency domain:

∇× (∇× E)− k0
2

(
ε− i σ

ωε0

)
E = 0 (1)

The heat source QMW is then calculated as:

QMW =
σ

2
(E · E) . (2)

QMW can be converted to specific absorption rate (SAR)
by normalization with density ρ, i.e. QMW = ρ · SAR.

The electrical properties σ and ε at 37◦ are taken equal to
1.9 (S/m) and 45 respectively, which are typical for human
liver at 2.45 (GHz). A sigmoidal description is used for
the dependence with temperature of electrical properties, as
introduced in [4] with the corrections discussed in [5], that
are particularly relevant at temperatures above 100◦. In the
present work, the strong coupling with the BHT equation is
relaxed by defining:

SAR′(x, T ) = SAR(x, T0)f(ε(x, T ), σ(x, T )) (3)
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This approach allows to effectively split the SAR into a
SAR(x, T0) term which has mainly to do with the charac-
teristics of antenna construction and the operating frequency.
And f(T ) which effectively models the change in SAR dur-
ing ablation due to non-linear effects. The wave propagation
equation can then be solved for the initial conditions only or
SAR(x, T0) can be replaced altogether with an appropriate
approximation, as will be further detailed later in the text.

The results obtained with the SAR computed by updating
the E field at every time step have been compared for a lim-
ited set of exemplary cases (75−100W , 400−600s ablation
time) to those obtained with SAR′ using f = p σ(x,T )

σ(x,T0) , with
p a scaling factor related to power. The differences in the
resulting ablated region and in maximum temperature at the
end of ablation remained below 5% and 15% respectively, a
result in line with similar comparisons reported in [6]. These
error levels are typically below those introduced by other
sources of uncertainty (e.g. needle positioning) and are thus
considered acceptable for current practical applications.

B. Heat Transfer in Tissue

The BHT equation used in the present work is given by:

ρCpeff
(T )∂tT −∇(k(T )∇T ) + Cpbwb(T )(T − Tb)

= QMW (x, T )
(4)

The suffix b refers to blood. The perfusion rate wb(T )
and the thermal conductivity k(T ) of liver are functions of
temperature as described in [11], the values at 37◦ being
respectively 5.0 (kg/m3s) and 0.51 (W/mK). The heat
capacity Cp is modified to take into account the latent heat of
evaporation, which is particularly important for temperatures
above 90◦. Following [13], the effective heat capacity is
defined as:

Cpeff
= Cp −

α

ρ

∂W

∂T
, (5)

where α = 2260 (kJ/kg) is the latent heat of water, W is the
tissue water density (kg/m3) and ∂TW is taken equal to the
measured values reported in [13] with base water fraction of
70%. The density ρ and Cp are taken equal to 1080 (kg/m3)
and 3540 (J/kgK) respectively.

C. Thermal Damage

The thermal damage is estimated with a standard Arrhe-
nius model, see for instance [9]:

Ω(x, t) =

∫ t

0

Ae−Ea/RT dt (6)

The activation energy Ea is set to 2.769e5 (J/mol), the
frequency factor A to 5.51e41 (s−1) [7]. R is the universal
gas constant. The Arrhenius damage integral Ω can be used
to estimate the probability of cell death θ(x, t) = 1− e−Ω.

III. EFFECTIVE MODELS FOR MW ANTENNAS

Based on the type of the MW antenna and the presence of
gas or water cooling in the needle, each MW ablation device
creates a distinct pattern of heat transferred to the tissue. The
shape of its distribution can be effectively approximated by

simple mathematical functions that capture its basic form.
In the following, we create a simplified representation of
the heat source generated by a MW antenna, which is
able to reproduce with sufficient accuracy the increase of
temperature and the ensuing ablation around a MW needle.

A. Benchmark Case

A detailed geometrical model is created of an insulated
microwave antenna made of a proximal radiating section,
essentially a monopole choke antenna, connected through the
inner feed to a tapered distal radiating section. Furthermore,
it is assumed that the radiating section is surrounded and
actively cooled by a saline solution (which therefore acts
also as a dielectric buffer). This construction is intended to be
similar to state of the art MW devices such as the Emprint de-
vice [2]. The dimensions of the needle components have been
roughly optimized to create ablations in the range of size and
shape of those reported by real MW ablation systems, e.g. in
[2]. The efficiency is optimized by minimizing the antenna’s
reflection coefficient. For the final construction, at the start
of ablation, roughly 70% of the input power is delivered
to the tissue. The computational solution of this model, see
Fig. 1, enables us to generate ground truth reference data for
benchmark and validation of the approximate method.

Fig. 1: A. Heat source at the beginning of ablation, B.
Temperature distribution after 600 (s) of ablation, C. Thermal
damage after 600 (s) of ablation.

B. Effective Model

Exploiting the radial symmetry of the modeled MW an-
tenna, we can divide the heat source shape into a longitudinal
and radial component. In particular at time t = 0 (s) the
MW generated heat along and across the needle, is depicted
in Fig. 2. The two peaks correspond to the location of the
radiating sections of the antenna, and can be approximated by
the sum of two Gaussian functions. The radial decay of heat
can be described by the closed form of the SAR distribution
as presented in [14].

In particular, we define the parameter µ =
(a1, a2, c1, c2, z01, z02, n, r0), where a1 ∈ [0.1, 10] × 107

(W/m3), a2 ∈ [0.1, 1] × a1, c1 ∈ [0.5, 2] (mm), c2 ∈ [2, 6]
(mm), z01 ∈ [11, 15] (mm) and z02 ∈ [16, 21] (mm),
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Fig. 2: Heat source along the surface of the ablation needle
and across it. We plot in blue the ground truth QMW and in
red an example of the effective heat source QEF . The z and
r directions are indicated in Figure 1.

correspond respectively to the scaling, the variance and the
center of the two Gaussian functions close to the peaks of
the MW heat source. While r0 ∈ [0.1, 1.2] (mm) acts as an
offset of the SAR from the geometric center of the catheter
and n ∈ [2, 3] corresponds to different approximations used
for the analytic description of the SAR, for more details see
[14] and references therein.

Qz(z;µ) = a1g(z; c1, z01) + a2g(z; c2, z02), (7)

Qr(r;µ) =
(2α(r + r0) + n− 2) exp(−2α(r + r0))

2(r + r0)n
, (8)

where g(z; c, z0) = exp
(
−(z − z0)2/(2c2)

)
and α =

0.0413 (mm−1) in an attenuation constant. In addition, we
can multiply the radial decay with a hyperbolic tangent
function h(r;µ) = tanh (5 (r − r0/2))+1, so that we reduce
the total heat over the volume of the needle. This is relevant
because in the following we optimize the parametrization of
the effective heat source not only to match the ground truth,
but also to match the heat that is dissipated into the tissue.
The ensuing parametrized effective heat source is given by

QEF (r;µ) = h(r;µ)Qr(r;µ)Qz(z;µ) (9)

C. Methods for Device Specific Parameter Identification

We identify appropriate values for the shapes parameter
µ by solving a mathematical optimization problem. In par-
ticular, we minimize a cost function that comprises of an
appropriate norm of the difference between a target field and
the corresponding prediction of the model with the effective
heat source. The target field can be any or a combination
of the following: temperature distribution, thermal damage,
ablation volume, point temperature measurements and others.
In the following we define different possible formulations for
the cost function and present the results of the solutions to
the corresponding minimization problems.

1) Optimization with respect to target temperature: In
order to identify the model parameters for QEF so that the
temperature distribution between the ground truth and the
effective model match, we minimize the cost function

fI(µ) = ω1f
KN
T (µ) + ω2fQ̄(µ), (10)

where fKNT (µ) =
∑K
k=1

∑N
i=1

(
(T kMW,i − T kEF,i)/T kMW,i

)2
is the squared mean relative difference between effective and

target temperature with T k•,i, i = 1, . . . , N , k = 1, . . . ,K
being temperature data at N spatial locations at K time
points computed with the MW (MW ) or the effective (EF )
heat source, fQ̄(µ) =

(
(Q̄MW − Q̄EF )/Q̄MW

)2
is the

squared relative difference between the effective and target
total heat Q̄ at the beginning of ablation, and ω1, ω2 are user
defined weights.

2) Optimization with respect to target thermal damage:
Analogous to the temperature formulation we define a cost
function that ensures that µ is such that the thermal damage
of the approximate model matches the ground truth, i.e.

fII(µ) = ω1f
KN
θ (µ) + ω2fQ̄(µ), (11)

where fKNθ (µ) =
∑K
k=1

∑N
i=1

(
(θkMW,i − θkEF,i)

)2
corre-

sponds to the difference between effective and target thermal
damage and fQ̄, ω1 and ω2 are as in (10).

3) Optimization with respect to target thermal damage
and point temperature measurements: In the case where
point temperature measurements are available, e.g. via ther-
mocouple measurements close to the ablation needle, we can
extend cost function (11) as follows:

fIII(µ) = ω1f
KN
T (µ) + ω2f

LM
θ (µ) + ω3fQ̄(µ), (12)

where fKNT is as in (10), fLMθ is analogous to (11), and
N << M and L << K because we have only a few
temperature measurements at a high temporal resolution, but
know the distribution of thermal damage only at a few time
points. Again ωi, i = 1, 2, 3 are user defined weights.

IV. NUMERICAL RESULTS

Solutions to both the MW and the effective models are
computed using the finite element method (FEM) in a hybrid
environment: COMSOL 5.5 coupled with MATLAB R2020b.
The optimization problems for determining the model param-
eter µ of the effective heat source are solved in MATLAB
using the therein available Bayesian optimization method.
Bayesian optimization is an appropriate choice for global
optimization problems, where the cost function is expensive
to evaluate.

We compute solutions to optimization problems with the
following five variations of the above defined cost functions:
(Opt Ia) optimize fI(µ) with ω1 = ω2 = 1, (Opt Ib) optimize
fI(µ) with ω1 = 1/(NK) and ω2 = 1, (Opt IIa) optimize
fII(µ) with ω1 = ω2 = 1, (Opt IIb) optimize fII(µ) with
ω1 = 1/(NK) and ω2 = 1, and (Opt III) optimize fIII(µ)
with ω1 = ω3 = 1 and ω2 = 10/(LM). The weights
are chosen so that all terms in the cost function are of the
same order of magnitude. Different weight combinations can
result in different optimal solutions. Although optimizing the
weights would be possible, it would be very computationally
expensive and is omitted from this study.

We expect that by down-weighting fKNT or fKNθ we
enhance the importance of the total heat in the effective
model matching that of the MW model. Whereas in Opt
III by down-weighting fLMθ we achieve a balanced cost
function where all three terms have similar magnitudes. This

4309



is reflected in the results presented in Table I, where we
present different errors between the effective model and
the ground truth. In particular, the root mean squared error
(RMSE) EF for a field F = (F ki )k=1,...,K

i=1,...,N , computed with
the MW model FMW and the effective model FEF is given
by EF = (

∑K
k=1

∑N
i=1(F kMW,i−F kEF,i)2/(NK))1/2, where

N is the number of points in the spatial and K the number
of time steps in the temporal discretization of the problem.
The RMSE for the ablation volume in time is given by EV =
(
∑K
k=1(V kMW −V kEF )2/K)1/2. Finally, the percent error Eφ

for a scalar φ is given by Eφ = 100%×|φMW −φEF |/φMW

and it is used to compute the error in the total heat and the
end ablation volume.

TABLE I: Various errors between optimized effective model
and ground truth for the different cost functions.

Error Opt Ia Opt Ib Opt IIa Opt IIb Opt III
ET (◦C) 1.3350 1.8649 1.5022 1.4242 1.5053
Eθ 0.1868 0.3146 0.1910 0.2007 0.2311
EV (cm3) 0.2518 2.5479 0.5330 0.5591 0.5237
EVend

3.3% 30.1% 0.07% 7.9% 0.2%
EQtot 20.2% 0.8% 13.9% 1.6% 4.5%

All solutions, except for Opt Ib, can reproduce the ground
truth ablation volume to a satisfactory level, see Fig. 3. The
result of Opt Ia has the smallest RMSE for the temperature
and consequently also the thermal damage, but a larger
percent error for the total heat. On the other hand, Opt Ib
matches well the total heat, with less than 1% difference
from the ground truth, at the expense of the temperature
and thermal damage. The miss-match in temperature results
in a significant enlargement of the ablation volume. This
is reflected in both the yellow lines in Figure 3 and the
corresponding EV and EVend

in Table I, with the end ablation
volume being 30% larger than the ground truth. We expect
however, that further adjustments to the weights of Opt Ib
can improve the result. This is strengthened by the outcome
of Opt IIb and III, where the terms in the cost function are
more evenly balanced and a good agreement in temperature,
ablation and thermal energy is achieved.

In the above examples we consider different possibilities
for available ground truth data. Opt I examines the case
where temperature measurements at every point of the spatial
discretization and at every minute of simulation time are
available. In Opt II we assume that the thermal damage is
known at every point of the spatial discretization and at every
minute of simulation time. In Opt III we assume to have the
distribution of θ only at 5 and 10 minutes, while we have
temperature measurements every 2 seconds on five locations,
two on the probe and three at 4, 8 and 12 (mm) away from the
probe. In real practice, such target data could be derived from
the MW device manufacturer specifications, previous abla-
tions and thermocouple measurements. The results presented
above show the consistency of the optimization and allow us
to adapt the method depending on the ground truth available
in real setting. Hence, we are confident that this approach
allows to incorporate more easily new clinical data or device

Fig. 3: Ground truth versus optimized effective model ab-
lations. Left: volume growth in time. Right: isolines of the
ablation after 10 minutes over the distribution of θMW . The
similarity of the different approximations gives us confidence
that this approach can be effective for different scenarios
depending on data availability.

knowledge, when available, thereby continuously improving
the effective model and the accuracy of its predictions. The
applicability of the full model and the effective description
in clinical setting is currently being tested in clinical studies.
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