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Abstract— A mental and physical recovery after an awaken-
ing moment depends not only on the overall sleep duration and
quality but mostly on the sleep stage in the waking moment.
The most comfortable awakening moment is during the Light
or Wake sleep stages. But the fix-time alarm clock doesn’t
take into account the sleep stage in the awakening moment,
which often results in awakening during the Deep or Rapid
Eyes Movement stages. To reduce the negative recovery effect,
big companies and research groups develop various awakening
systems. Such systems recognize sleep stages based on wearable
sensors’ data (mostly from accelerometer sensors) and thus can
find the easiest awakening moment time with minimal recovery
effects.

However, it is quite hard to measure and verify the efficiency
of such systems without using polysomnography (which can
be performed only in clinical conditions by medical experts).
To solve this problem we developed a methodology based on
questionnaires and psychological tests. Such an approach has
big scalability, does not require special medical equipment, and
can be evaluated in a home environment with minimal support
effort. The proposed verification approach has been tested on
smartwatches with the sleep stages forecast model. The pro-
posed model accuracy was 78%. Results of our experiment show
that the majority of users demonstrated a correlation between
awakening quality and the verification tests performance.

I. INTRODUCTION

Sleep plays an important role in the human lifetime. It
provides physiological and psychological relaxation, which
affects many aspects of health and quality of life: daily
activity, physical disorders, cardiovascular diseases, diabetes,
obesity, etc [1]. Physiologically, sleep is a cyclical process
of changing four sleep stages: Rapid Eye Movement (REM),
Light, Deep, and Wake stages [2].

Sleep quality is determined by the cyclical pattern of
successive sleep stages changing. The ideal night sleep
pattern includes 4–6 completed sleep cycles of Light-Deep-
Light-REM stages [3]. But human life often requires waking
in specific moments, usually early in the morning. Such
sleep interruption instead of natural awakening may result in
an uncomfortable state after awakening, called sleep inertia.
Sleep inertia is a physiological state of impaired cognitive
and sensory-motor performance that is present immediately
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after waking, when a person experiences drowsiness, disori-
entation and a decline in motor dexterity [4], [5]. Impairment
from sleep inertia may take several hours to dissipate.
Usually, morning sleep inertia is experienced for 15 to 60
minutes after waking [6].

Usually, awakening in the Deep/REM sleep stages is
associated with greater sleep inertia [7], [8]. Generally,
awakening in the Light/Wake sleep stages is much more
comfortable. To find the optimal moment of awakening, an
ideal alarm system should take into account current and
forecast future sleep stages to find the optimal moment
for awakening (in the Wake or Light sleep stages). An
example of such a system based on wearable sensor data
from photoplethysmography (PPG) and accelerometer (ACC)
data was proposed in [3].

The development of such systems is complicated since the
verification of the effectiveness of such algorithms is carried
out with the involvement of specialized medical equipment,
and medical personnel, for conducting polysomnography
(PSG). The gold standard of sleep stages classification,
based on the PSG approach, includes recording electrocar-
diogram, electrooculogram, body posture monitoring, nasal
pressure, oronasal airflow, thoracic and abdominal volume
changes, snoring sound and blood oxygen saturation [3].
These methods make it possible to achieve sleep stages
classification accuracy of about 0.9 for 5-sleep stages classes
[9], [10] and 0.80–0.95 for sleep/wake classification [1], [11],
[12]. However, PSG measurements have certain limitations:
require medical sleep experts and equipment for sleep stages
classification.

Based on the alarm system proposed in the work [3],
in the current work, we built our model which was able
to distinguish the Wake and Light from the Deep and
REM sleep stages for predicting future sleep stages to find
the global optimum. In the forecast model, we embedded
additional input heads which process independent different
time slices of input signals (from one to sixty seconds).
Such modification gave 78% sleep stages forecast accuracy
for Light/Wake vs. Deep/REM classification. To verify this
model, we proposed a method for measuring awakening
quality by conducting psychological tests and questionnaires.
Such methodologies are often used to assess the full night
sleep quality and efficiency of person’s sleep [6], [8], [13],
[14], [15]. But we did not find any studies that propose
methods for detection waking up quality and post-sleep
inertia. So in the present article, we propose a verification
method based on the hypothesis, that user’s feelings and
mental cognitive abilities immediately after awakening in
the Light/Wake sleep phases are higher in comparison with
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Fig. 1. An example of the optimal alarm moment prediction. The dashed
blue curve represents the predicted sleep pattern of a user (represented by
the probability of Light/Wake classes.

those after awakening in the Deep/REM sleep phase. Such
methodology shows that 78% accuracy of the sleep stages
forecast model was enough to improve awaking quality for
most of the users.

The article is organized as follows. In Section II we
give a short description of the architecture of the proposed
Smart Awakening System introduced in [3]. In Section III we
describe our verification methodology and metrics we used
to measure the efficiency of our system. In Section IV, we
introduce the experimental database of users of our awaking
system. Finally, in Section V we describe and analyze users’
answers and performances in psychological tests according
to our verification methodology.

II. SMART AWAKENING SYSTEM
ARCHITECTURE

The overview of the proposed Smart Awakening System
architecture is shown in Fig. 2. The core of technology
was 2-classes sleep stages forecasting model for the 20-
min interval. It required 200 minutes of consecutive sleep
data from PPG and ACC sensors with a frequency of 20
Hz. The main difference from the model presented in work
[3] was the input signal was split into non-overlapping N-
seconds windows. Each data split was fed in a separate
rule-based feature extractor. The rule-based features extrac-
tor performed signal statistic calculation in the time and
frequency domain on the slide window (mean, standard
deviation, median, maximum, minimum, and quantile). Only
60 seconds window size features were calculated similarly
as it was presented in [3]. These rule based features were fed
to the trainable convolution neural network (CNN) features
extraction model. For each N-second window size we built
a separate CNN model. The CNN model was built in such
a way that output features of length 200 with 64 channels
for all N-second windows. As building blocks for the model
MaxPool, BatchNorm, Dropout, and CNN layers were used
with kernel size 3 or 5 and fixed number of 32 channels. To
forecast sleep stages, the CNN features were concatenated in
one feature tensor which was fed to Gated Recurrent Units
sequential model (GRU) [16]. The output of the forecast
model consisted of 20 minutes forecast probabilities of the
Light/Wake sleep stages. At the end number of trainable
parameters was 463786. Probabilities were used to calculate
the optimal time for an alarm clock signal for waking up
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Fig. 2. The overview of proposed Smart Awakening System architecture.

a user in the most comfortable time moment (inside time
period defined by the user).

The system recalculates the optimal alarm moment every
minute till the current moment becomes optimal. At that
moment an alarm clock goes off.

The Smart Awakening System was implemented as a pair
of smartwatches and smartphones.

III. DESCRIPTION OF VERIFICATION
METHODOLOGY

As was mention before, the state-of-the-art method for full
night sleep stages monitoring and detecting the awakening
sleep stage is based on polysomnography. But this approach
is difficult to perform in non-medical conditions and the data
is disturbed by the presence of medical staff and numerous
medical equipment, so call ”white coat syndrome” [17].
This reason makes it hard to understand the efficiency and
benefits of developing new approaches for improving sleep
and awakening quality. To solve this problem we proposed
the method of awaking quality validation.

Waking up quality is measured in two ways:
• Subjective user wake up rate using a questionnaire

for reflecting personal opinion. We made 2 question-
naires: Waking quiz (performed immediately after user
awakening) and Get up quiz (at least after 30 minutes
since awakening). The goal of the Waking quiz was to
measure the first subjective impression of the quality
of the awakening by the Smart alarm application. Get
up quiz questions were selected from specialized sleep
quality questionnaires [15], [18], [19]. The main goal
of this quiz was to find untypical users and unusual
sleep conditions during the verification procedure and
measure the subjective impression of awakening quality
after some time after getting out of a bed. In this quiz,
the user answered the questions about the condition
before sleep, during sleep, and waking condition.
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• Psychological tests for reflecting physiological user’s
state and cognitive mental abilities after awaking. We
chose five psychological tests: Stroop, Finger Tapping,
Sound Alertness, Multitasking, N-back tests. These tests
are widely used in psychology to assess different aspects
of user mental health and cognitive abilities: working
memory, concentration, motor speed, selective attention,
automaticity, parallel distributed processing, executive
functions, and choice reaction time.

A. Psychological Tests Implementation

All tests were implemented as an Android application on
a smartphone. Gamification of tests was done with a slightly
modified tests procedure and shortened test time duration.
Such a solution allowed to perform verification of awaking
quality more easily and quickly. Users didn’t need to change
their environment, regime (go to sleep, get up), and habits
for alarm clock verification procedure.

1) Stroop Test (processing speed, selective attention, au-
tomaticity, parallel distributed processing [13]): The test is
performed with four colors: Red (R), Green (G), Blue (B),
and Yellow (Y). A user should choose the button from four
options ”R”, ”G”, ”B”, and ”Y” which correspond to the ink
color of the color caption, and press it as fast as possible.

2) Finger Tapping Test (motor speed [20]): A user should
tap as fast as possible for 10 seconds on the phone’s screen
to achieve the highest amount of taps.

3) Sound Alertness Test (choice reaction time [14]): A
user should respond to sound commands: ”Left”, ”Right”,
”Up”, ”Down”; by swiping as fast as possible to the corre-
sponding direction. The whole test consists of a sequence of
15 aforementioned sound commands in random order.

4) Multitasking Test (executive functions, processing
speed, selective attention, automaticity, parallel distributed
processing [21]): The task includes 2 subtasks: ”Filling”
and ”Shape”, which are selected randomly, and a user should
reply to each of them. In the ”Shape” subtask a user should
classify the shape of the presented figure between ’diamond’
(by pressing button ”L”) or ’rectangle’ (button ”R”). In
the ”Filling” subtask a user should classify the filling of
the presented figure: ’two dots’ (by pressing button ”L”)
or ’three dots’ (button ”R”). In each trial random subtask
mode is written, the figure has a random shape (’diamond’
or ’rectangle’) and an amount of dots (2 or 3). A user should
press the right button (”R” or ”L”) for the current subtask
ignoring distraction: in the ”Filling” subtask figure’s shape
is not important.

5) N-back Test (working memory and concentration [22],
[23]): In the N-back (in our case – 3-back) test one letter
appears in the center of the screen, and a user should respond
whether the current letter matches the letter presented three
trials previously as fast as possible. If a user decides that it
is the same letter, he/she should press the ”M” button, in the
opposite case – the button ”N”. A user can respond to stimuli
immediately after letter appearance. The test ends when 25
letters were provided for remembering and recalling.

In all tests, if a user doesn’t respond to a task for 3
seconds, the algorithm considers this case as failed and shows
the next task. The duration of Multitasking, Stroop tests is 60
seconds each. For Multitasking, Stroop tests approximately
half of the tasks are congruent: stimuli and distractor mean
the same and requires pressing the same button (a figure
with a ’diamond’ shape and 2 dots in the Multitasking
task requires pressing ”L” whether it is the ”Filling” or the
”Shape” subtask).

B. Smart Awakening System in Verification Mode

To measure the sleep inertia, a user wakes up in different
conditions:

• The ”Best” mode is the regular regime of alarm clock
which wakes up a user in the Light/Wake stage.

• The ”Worst” mode is a specially modified alarm system
application for waking up a user in the Deep/REM stage.

• The ”Natural” awakening mode in a case when a user
wakes up by himself/herself.

• Cases of awakening due to external distraction were not
taken into consideration.

During testing, the user doesn’t know in which mode (the
”Best” or the ”Worst”) the alarm is working. The application
automatically and randomly switches between the ”Best” and
the ”Worst” modes. Measuring and analyzing differences in
user performance between waking up psychological tests and
Waking quiz responses will show how the alarm application
can influence the quality of awakening. It is expected to get
higher subjective awakening quality and better performance
in psychological tests in the ”Best” and ”Natural” cases in
comparison with those in the ”Worst” case.

The pipeline for one trial is following:

• Before a sleeping user sets an alarm time period.
• After awaking user answers the Waking quiz and phys-

iological tests.
• After fully waking up (at least after 30 minutes) user

answers Get up quiz the tests.

This procedure was repeated for each user until 7 trials in
each mode (”Best”, ”Worst”, ”Natural”) were collected. A
few first trials were for adaptation to the tests and evaluation
procedure. During the verification, a user can wake up before
the alarm ringing. In this case, a user can cancel the alarm
clock and start the Waking quiz and tests. In case of external
distraction awakening, it is not needed to complete tests and
quizzes, because such cases were not evaluated. To reduce
the influence of body pose, at the start of testing, a user has
to choose a body pose (lying or sitting, usage of one or two
hands, etc.), and pass physiological tests only in it.

C. Metrics

User Satisfaction Index allows describing the amount of
users in the experiment who confirm better well-being when
awaking in the optimal time estimated by our model. It is
based on the comparison of user awakening rates in different
application modes (”Best” and ”Worst”):
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UDk =
1

Nbk

Nbk

∑
i=1

rbest
i − 1

Nwk

Nwk

∑
i=1

rworst
i , (1)

where UDk – the differentiation rate for user k (the difference
between self-feeling during awakening in ”Best” and ”Worst”
modes given in Wake up quiz ), Nbk,Nwk – the number of
filtered responses in ”Best” and ”Worst” awakening modes
for user k, ri – the response rate of user i filtered by
his/her daily lifestyle and usual sleep conditions (in ”Best”
or ”Worst” mode). The rate is the user’s subjective evaluation
of awakening quality. It ranges between 1 and 9, with the
step of 0.1.

The Satisfaction Index (SI) is calculated as the average
positive differentiation rate among all participants:

SI =
1
N

N

∑
k=1

I[UDk > 0], (2)

where I[·] – the indicator function, N – the overall number of
participants. In the ideal case SI → 1 (all user’s awakening
rates during the ”Best” mode are higher than in the ”Worst”
mode).

Performance in Psychological Tests: We analyzed
user’s performance in psychological tests using two metrics:
number of mistakes and reaction speed (in ms). For Stroop
Test, there is an additional metric called the Stroop effect
which is computed as a difference between reaction speed in
trials with corresponding and different color and text which
represents this color. As for Tap Count Test, we refer only
to the number of taps made by a user.

In this study, our hypotheses about performance in the
tests are following:

• Mistakes and Reaction in all tests: it is expected to see
less number of mistakes and better reaction time during
a psychological test in the ”Best” alarm mode.

• Stroop Effect Value in Stroop Effect Test: it is expected
to see a lower value of Stroop effect in the ”Best” alarm
mode.

• Taps Count in Tap Counter Test: it is expected to see a
higher number of taps in the ”Best” alarm mode.

IV. EXPERIMENTAL DATA

The sleep stages forecast model was trained on the sleep
dataset collected by Samsung Medical Center (SMC) during
the 2017 year. The train/test set included data of subjects with
Apnea-Hypopnea Index less than 15, consisted of 240 nights
from 187 different subjects. Sleep data were labeled using
PSG data for every 30s epochs using the American Academy
of Sleep Medicine guideline [24]. The data contains wrist
green light PPG and 3D–ACC signals from Samsung Galaxy
Watch at 20Hz sampling frequency.

The verification of the proposed Smart Awakening System
was conducted in the 2021 year from February to April.
The study protocol respected the Helsinki declaration and an
informed consent was obtained from each participant before
starting the experiment. In our study, 9 participants used the
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Wake rate
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Fig. 3. Distribution of awakening quality rate for Wake up quiz depending
on the alarm mode.

application during the test period of 24 days. Thus, result
data consists of 217 quizzes and psychological test results.

V. RESULTS
A. The Sleep Stages Forecast Model

The sleep stages forecast model was trained to classify
Light/Wake vs. Deep/REM sleep phase. We used a cross-
validation (5% of train subject logs, 5 folds) for model
hyperparameters tuning. During the training and test phases,
the logs were split on 220 minutes windows (200 is a log
history, the last 20 is sleep stages labels to forecast) using
sliding window approach with 1 minute stride. All models’
weights were initialized with He Normal initialization [25].
Cross Entropy loss function and Adam optimizer with cycle
learning rate [26] (ranging from 3×10−4 to 3×10−7) were
used for each run. The batch size during training was 64. L2
regularization coefficient was 1× 10−3. To test the model
users from the SMC dataset were randomly split between
the train and test parts with a percentage of 0.8:0.2. The
best accuracy was obtained for the model with N-seconds
windows where N was 1 and 60 seconds. These modifications
allowed to achieve 78.0% and 77.5% (vs. 77% and 75% in
[3]) accuracy for 10 and 20 minutes forecast respectively.

B. User Satisfaction Index

Satisfaction Index (2) was calculated based on the users’
awakening quality rate in the Wake up quiz. The distribution
of users’ differentiation rates UDk is shown in Fig. 3. Such
overlapping of UDk rates in different modes can happen due
to the users’ regular sleep schedule, daily lifestyle, and sleep
condition [6], [27]. On average users give higher awakening
rates in the ”Best” alarm mode than in the ”Worst” mode,
which indicates better subjective feeling when awakening in
the ”Best” mode (corresponds to ”Light/Wake” sleep phase).
This resulted in User Satisfaction Index (2) among all the
participants equal to 0.89.

C. Psychological Tests

Distributions of mistakes made by all users in test trials
in different awakening states (”Best”, ”Worst”, ”Natural”
alarm modes) and reaction speed are shown in Fig. 4. To
visualize user’s performance (mistakes and reaction speed)
on the same scale, these values for each user in each trial
were normalized by the user’s median value in all trials:

Nik(normalized) =
Nik

median([Ni1,Ni2, ...,Nin])
, (3)

where Nik – the number of mistakes or reaction speed for
user i in trial k.
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Fig. 4. Distributions of mistakes (left parts) and reactions (right parts) for
the psychological tests depending on the alarm mode.

For the Stroop Test, on average users make fewer mistakes
in the ”Best” alarm mode (corresponds to awakening in the
”Light/Wake” sleep phase) than in the ”Worst” mode (corre-
sponds to awakening in the ”Deep/REM” sleep phase). The
least number of mistakes is made after waking without alarm.
The Pearson correlation coefficient between the numbers of
mistakes and waking rates is equal to -0.31 – on average
higher awakening rates correspond to better performance
(fewer number of mistakes) in the Stroop Test. As for the
reaction speed and the Stroop effect metric, the correlation
with the awakening mode is less significant in our study.

User performance in the other psychological tests de-
scribed in Section III didn’t show a significant correlation
with the alarm mode in our study (see Fig. 4). There
are several factors that may explain these results. First,
when passing tests some cognitive abilities, e.g. concentra-
tion, memory and attention, are increased. Tests also create
stressful situations that might result in Cortisol Awakening
Response, which is connected with sleep inertia dissipation
[28], [29]. Second, the effect of blue-enhanced light from a
mobile display and sounds in tests (Sound Alertness) might
increase the speed of transition to a fully awake state [30].
Also, some of the participants have regular sleep schedule
and habits, which may decrease sleep inertia severity and
duration [6], [27]. These factors potentially may affect the
performance during testing immediately after awaking. Clar-
ification of these hypotheses may require additional testing
with a bigger number of participants.

VI. CONCLUSIONS

The results of measurements proved the efficiency of our
Smart Awakening System. The majority of users reported a
better feeling of well-being when awakening in the Light
sleep phase. It was shown that Stroop Test, performed
immediately after awakening is efficient to measure the sleep
inertia effect after awakening and its dependence on different
sleep stages in the awakening moment. On the other hand,
it was shown that psychological tests which don’t perform

immediately after awakening were not suitable to measure
such effects.

The majority of users reported a better wake-up rate
in awakening during the ”Best” mode by using our sleep
stages forecast model. These results conclude that such
Smart Awakening Systems (which achieved at least 78%
accuracy) are suitable for daily use to improve users’ awak-
ening quality. The future work will focus on sleep latency
detection and reduction. Also, additional research is required
to develop a psychological test that can combine different
aspects of users’ mental, physical, and cognitive states with
just enough time duration to assess sleep inertia severity.
Another important topic is the efficiency investigation of such
systems under conditions of sleep deprivation when people
can sleep only for short periods and have to perform stressful
tasks after (soldiers, pilots, etc.).
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