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Abstract— In diabetes management, the fraction of time spent
with glucose concentration within the physiological range of
[70−180] mg/dL, namely time in range (TIR) is often computed
by clinicians to assess glycemic control using a continuous
glucose monitoring sensor. However, a sufficiently long mon-
itoring period is required to reliably estimate this index. A
mathematical equation derived by our group provides the
minimum trial duration granting a desired uncertainty around
the estimated TIR. The equation involves two parameters, pr
and α, related to the population under analysis, which should
be set based on the clinician’s experience. In this work, we
evaluated the sensitivity of the formula to the parameters.

Considering two independent datasets, we predicted the un-
certainty of TIR estimate for a population, using the parameters
of the formula estimated for a different population. We also
stressed the robustness of the formula by testing wider ranges
of parameters, thus assessing the impact of large errors in the
parameters’ estimates.

Plausible errors on the α estimate impact very slightly on
the prediction (relative discrepancy < 5%), thus we suggest
using a fixed value for α independently on the population being
analyzed. Instead, pr should be adjusted to the TIR expected
in the population, considering that errors around 20% result
in a relative discrepancy of ∼ 10%.

In conclusion, the proposed formula is sufficiently robust
to parameters setting and can be used by investigators to
determine a suitable duration of the study.

I. INTRODUCTION

Diabetes is a chronic metabolic disease that causes unde-
sirable excursions of blood glucose (BG) concentration out-
side the physiological range of [70−180] mg/dL. Increasing
the time spent in this range, namely time in range (TIR),
allows limiting the risk of complications [1]. Therefore, BG
monitoring is an essential component of diabetes manage-
ment. The most modern approach to track BG excursions
relies on Continuous Glucose Monitoring (CGM) sensors,
which produce readings almost continuously (e.g., every 5
min) for several consecutive days/weeks [2]. CGM sensors
are currently used in numerous clinical trials having time-
in-ranges as endpoints [3], but the duration of these trials is
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crucial for a precise estimation of the outcome metrics: too
short monitoring periods provide a poor estimation, affected
by weekly fluctuations, while long trials result in excessive
costs, not justified by real benefits. Thus, determining a
suitable duration of CGM recordings providing a reliable
estimation of time-in-ranges represents an open issue.

Although different studies approached this problem [4],
[5], their suggestions are only empirical and the general-
ization to different populations poses some issues [6]. In a
recent work, [7] we proposed a new analytical approach to
address this issue, deriving a mathematical formula predict-
ing the uncertainty of time-in-ranges estimates based on the
number of CGM days. This formula could be used by an
investigator who is designing a clinical trial, to identify the
minimum trial duration required to achieve a desired level
of uncertainty around the final time-in-ranges.

The formula involves two parameters: pr, related to the
population to be monitored, and α, linked to the glycemic
range under analysis. When designing a clinical trial, the
values of these parameters are not exactly known a priori and
they can be only hypothesized (e.g., based on clinical expe-
rience or previous pilot studies). Understanding how much
sensitive the formula is to parameters setting is important to
assess the robustness of this new approach.

In this work, we evaluate the impact of sub-optimal
parameters pr and α on the predicted uncertainty, focusing
on TIR.

II. METHODS
A. Mathematical formulation of the problem

Glucose concentration can be modelled as a continu-
ous random variable, which assumes values in the range
[0,+∞] mg/dL. CGM measurements can be modelled as
non-independent realizations g1, g2, . . . , gN of a random
process gk, collected at time t = kT , where T is the CGM
sampling period. When considering a generic glycemic range
R ⊂ R (e.g., R = [70 − 180] mg/dL), the time-in-range to
be estimated is pr = P[gk ∈ R].

Let us now introduce hk, a random process made of binary
random variables, obtained as dichotomization of the process
gk to model samples within the range R (i.e., hk = 1
if gk ∈ R, hk = 0 otherwise). By construction, hk is a
Bernoulli random variable of parameter pr, hence mean and
standard deviation of hk are µ = pr and σ =

√
pr(1− pr).

In this framework, the time-in-ranges usually computed in
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clinical practice can be seen as the (unbiased and asymptot-
ically consistent) estimators of pr: t(n) = 1

n

∑n
k=1 hk.

Let us assume an autoregressive structure of order 1 for
hk (hypothesis already validated in [8]). This means that two
samples k, `, with k ≤ `, have the following autocorrelation
function: Rh(τ) = α`−k.

Finally, let us define the estimation error as: e(n) = t(n)−
pr, distributed around 0 with a certain standard deviation
sd[e(n)].

Under the previous assumptions, the following equation:

sd[e(n)] =

√
pr(1− pr)

n

(
1 +

2α

1− α
+

2α

n

(αn − 1)

(1− α)2

)
(1)

describes how fast the uncertainty around time-in-range
sd[e(n)] decreases as the number of CGM samples n in-
creases. Proof in [8].

In Camerlingo et al. [7], we validated the previous as-
sumptions and we showed that the uncertainty predicted by
(1) well matches the variability observed on clinical data.

Equation (1) involves two parameters: i) pr is the probabil-
ity of a CGM sample to be in the glycemic range R (i.e., it is
the "true" time-in-range), which depends both on R and on
the population under analysis; ii) α represents the correlation
between consecutive samples of the dichotomized process
hk. This correlation parameter is expected to be mainly
related to R, rather than to the population under analysis.
In the following, we evaluate how sub-optimal values of pr
and α impact on sd[e(n)].

B. Dataset

The analysis is performed using CGM data collected in
the REPLACE-BG study: a randomized trial comparing two
independent populations with different diabetes management
approaches [9]. Group A involves 149 subjects (71 women)
aged 44 ± 14 y.o., with glycated hemoglobin (HbA1c) of
7.1 ± 0.7% and baseline TIR of 63 ± 13% (mean±sd).
Group B involves 77 subjects (41 women) aged 45±13 y.o.,
with HbA1c of 7.0 ± 0.7% and baseline TIR of 65 ± 11%,
(mean±sd). Both the groups wore the Dexcom G4 Platinum
CGM sensor (Dexcom, Inc.) for 182± 6 days.

C. Design of the analysis

Focusing on TIR, we use (1) to obtain the theoretical
uncertainty sd[e(n)]. The parameters of the formula pr, α
are computed using, separately, data of Group A (i.e., prA,
αA), and data of Group B (i.e., prB , αB). To illustrate
the effectiveness of the proposed formula, the predicted
uncertainty sd[e(n)] is compared against the sample uncer-
tainty SDA[e(n)], computed retrospectively by CGM data
of Group A, as explained in the following.

For each participant of Group A, the most accurate es-
timate of TIR, i.e., TIR(N), is evaluated over the whole
trial duration N . Then, shorter trials are simulated extracting
several shorter windows of fixed durations n, ranging from 1
to 30 days. For each window j, TIR(n, j) is computed and
the estimation error is obtained as: e(n, j) = TIR(n, j) −

TIR(N), j ∈ 1, 2, . . . ,Mp, where Mp is the number of
different windows available for each participant, obtained by
considering different starting points (with a window shift of
1 day), as proposed in [8].

Repeating this procedure for all the participants, a total of
M values of estimation error are obtained for each duration
n. Finally, the standard deviation of the estimation error is
computed as:

SDA[e(n)] =

√√√√√ 1

M − 1

M∑
j=1

e(n, j)

2

The comparison between the sample uncertainty and the
theoretical uncertainty is performed in 4 different scenarios:

• In Scenario 1, the ideal case in which the most suitable
values of the parameters are available is analyzed. The
sample SDA[e(n)] is compared against the theoretical
sd[e(n)], obtained using prA and αA, both computed
by data of Group A.

• In Scenario 2, to simulate an error in setting pr, the
theoretical sd[e(n)] is obtained using prB , computed by
data of Group B, and αA, computed by data of Group
A.

• In Scenario 3, to simulate an error in setting α, the
theoretical sd[e(n)] is obtained using prA, computed by
data of Group A, and αA, computed by data of Group
B.

• In Scenario 4, the real-world case in which the true
values of the parameters are unknown is analyzed. To
simulate a suboptimal setting, the theoretical sd[e(n)]
is obtained using prB , αB , both computed by data of
Group B.

Furthermore, we test the sensitivity of the formula over
wider ranges of parameters values. Specifically, let us define
∆α = |αA − αB | and ∆pr = |prA − prB |; we compare
the theoretical sd[e(n)] obtained in Scenario 1 against the
sd[e(n)] obtained first using αA and pr ranging in [prA −
5∆pr, prA + 5∆pr], and then using prA and α ranging in
[αA−5∗∆α, αA +5∗∆α]. Finally, we vary simultaneously
both the parameters, among the previously defined ranges.

D. Metrics of comparison

To evaluate the error related to suboptimal parameters
setting, the sample and the theoretical uncertainties are
compared within [1, 30] days of monitoring in the four
scenarios. Their difference is then quantified by the absolute
relative discrepancy (RD) computed for a different amount
of collected samples n, corresponding to trial durations of 7,
14 and 30 days:

RD(n) = 100×
∣∣∣∣SD[e(n)− sd[e(n)]

SD[e(n)]

∣∣∣∣
III. RESULTS

The parameters pr and α are computed following the
pipeline described in [8]. Table I reports the values of the
parameters for Group A (second row) and Group B (third
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row). The relative difference in pr is 3.65%: this is a realistic
value to represent a limited error that could be committed
when setting pr before the clinical trial. As expected, the
difference in α is much lower, because it depends mainly on
the considered glycemic range and little on the population
under analysis.

TABLE I
FORMULA’S PARAMETERS pr AND α FOR THE TWO POPULATIONS

UNDER STUDY

Dataset pr α
Group A 0.6266 0.9616
Group B 0.6495 0.9599

In Figure 1, we compare the sample SDA[e(n)], computed
using data of Group A (solid red), against the uncertainty
predicted by the proposed formula, in the four scenarios,
from day 1 to day 30.

Fig. 1. Sample uncertainty SDA[e(n)] computed by data of group A
(solid red) vs predicted uncertainty sd[e(n)], for Scenario 1 (dashed blue),
2 (dashed black), 3 (dashed green), and 4 (dashed cyan).

As expected, in Scenario 1 the predicted uncertainty is
the closest to the sample uncertainty for most of time,
while in Scenario 4 the two curves are the most distant.
The uncertainty obtained in Scenario 3 exhibits a higher
discrepancy than in Scenario 2.
Although using optimal parameters grants the best prediction
of the sample uncertainty, it is important to note that the
curves obtained with suboptimal parameters are very close
to each other and very close to the curve with optimal
parameters.
Table II reports the values of RD between the sample and
the theoretical uncertainties at day 7, day 14 and day 30, for
the four scenarios under analysis.

In Scenario 4, the maximum RD is reached at day 30
and it is equal to 10.71%. Since SD[e(n)] = 4.01% at
day 30, even when both the parameters are suboptimal,
the proposed equation commits a very limited error of
0.43%. Therefore, limited (but plausible) errors in setting
the formula’s parameters are not crucial for the prediction
of the sample uncertainty.

TABLE II
ABSOLUTE RELATIVE DISCREPANCY BETWEEN SDA[e(n)] AND

sd[e(n)], IN THE FOUR DIFFERENT SCENARIOS

Scenario Absolute Relative Discrepancy [%]
7 days 14 days 30 days

Scenario 1 1.35 7.04 7.53
Scenario 2 2.69 8.30 8.79
Scenario 3 3.41 8.99 9.48
Scenario 4 4.72 10.23 10.71

To evaluate the sensitivity of (1) to pr, panel a of Figure
2 reports the mean curve and the [min-max] interval of the
predicted uncertainty obtained using αA = 0.9616 and pr
ranging in [prA − 5∆pr, prA + 5∆pr] = [0.5123, 0.7410],
for trial durations of [1 − 30] days. Panel b shows the
RD computed between the sd[e(n)] curves obtained for
the different pr values and sd[e(n)] obtained using prA,
at day 7, 14 and 30. Similarly, in panel c, the predicted
uncertainty is computed using prA = 0.6266 and α ranging
in [αA − 5∆α, αA + 5∆α] = [0.9533, 0.9698], while panel
d reports the RD between each curve and sd[e(n)], obtained
using αA, after 7, 14 and 30 days.

Fig. 2. Sensitivity of the proposed formula to the parameters pr and
α. Left: mean curve (dashed blue) and [min-max] range (yellow area) for
different pr values (panel a) and for different α values (panel c). Right: RD
between the sd[e(n)] obtained using prA, αA and the sd[e(n)] obtained
simulating an error in setting pr (panel b) or α (panel d), evaluated at day
7 (solid red), 14 (dashed green) and 30 (dashed blue). The black circle
indicates the RD computed using prA and αA.

The proposed formula results more sensitive to α than to
pr. The RD is equal to 9.43% for the highest pr value tested
(18% of relative error added to the prA), while it is equal to
3.33% for the lowest one, showing an asymmetric variation,
with an exponential shape. Therefore, the overestimation of
pr yields a greater discrepancy than its underestimation.
Variations of α induce RD values, up to 12.96% for α =
0.968. Also in this case, RD varies in a non-symmetric way,
reaching 9.39% for α = 0.9533.
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For both the analyses, the RD profiles at day 7, 14 and 30 are
almost perfectly overlapped, pointing out that variations in
pr or α provide a homogeneous shift of the sd[e(n)] curve.

Fig. 3. Sensitivity of the proposed formula to the parameters pr and
α. Panel a: mean curve (dashed blue) and [min-max] range (yellow area)
for simultaneous variations of pr and α. Panel b: RD between sd[e(n)]
obtained using prA, αA and sd[e(n)] obtained using different pr values
and three different α: 0.9533 (red), 0.9698 (green) and αA (blue), evaluated
at day 14. The black circle indicates the RD computed using prA and αA.

Panel a of figure 3 shows the mean curve and the [min-
max] interval of the predicted uncertainty obtained using
all the possible combinations of pr ranging in [prA −
5∆pr, prA + 5∆pr] = [0.5123, 0.7410] and α ranging in
αA−5∆α, αA+5∆α] = [0.9533, 0.9698], for trial durations
of [1 − 30] days. As expected, the uncertainty interval is
wider than in panels a, b of figure 2. Furthermore, panel b
of figure 3 reports the RD computed, at day 14, between
sd[e(n)] obtained using prA, αA and the sd[e(n)] curves
obtained using different pr values and three different values
of α among those tested: the minimum, the maximum,
and αA. The worst cases, with maximum discrepancy, are
represented by the pairs (prA + 5∆p, αA− 5∆α), providing
RD = 17.91%, and (prA − 5∆p, αA + 5∆α), providing
RD = 16.68%. Finally, overestimating both α and pr seems
to be not so crucial, with a discrepancy of only 2.27%.

IV. DISCUSSION AND CONCLUSIONS
In clinical trials involving patients with diabetes, the

fraction of time spent with CGM sensors within the physi-
ological range (namely TIR) is often computed as an index
of glycemic control. However, a sufficiently long monitoring
period is required to reliably estimate this index.
A mathematical equation derived by our group can be used to
set a suitable trial duration, since it predicts the uncertainty
around the estimated TIR (or other time-in-ranges), based on
the length of the monitoring period. The equation involves
two parameters, pr and α, which should be set before the
clinical trial based on the clinician’s experience.

In this work, we evaluated how errors on the parameters
impact on the predicted uncertainty. Specifically, we first pre-
dicted the uncertainty around TIR, computed retrospectively

from CGM data, using the parameters computed from an
independent population. Then, we stressed the robustness of
the formula by testing wider ranges of parameters, thus as-
sessing the impact of higher errors. Since realistic variations
of α are very limited, we suggest using fixed values of α
(e.g., for the TIR, αA can be used), thus accepting a limited
error on the uncertainty. Regarding pr, it should be adjusted
to the TIR expected in the population. When a reasonable
guess is not available, errors around 20% result in a higher
discrepancy than errors around −20%.

In conclusion, since the proposed formula is robust to
parameters setting, clinical investigators could use it to
determine a suitable duration of studies involving CGM.
Future works include a sensitivity analysis on the other time-
in-ranges and to investigate variations of α in populations
with different characteristics (e.g., type 2 diabetes, pregnant,
pediatrics, etc.).
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