
  

 

Abstract— Many biomedical robotic interfaces (e.g., 

prostheses, exoskeletons) classify or estimate user movement 

intent based on features extracted from measured 

electromyograms (EMG). In most cases, the parameters of 

feature extraction are determined heuristically or assigned 

arbitrary values. We propose a more rigorous method, 

numerical optimization, to systematically identify parameters 

that maximize classification accuracy based on EMG signal 

characteristics. In this study, we used simulated annealing, a 

common global numerical optimization method, to find the 

optimal values of three feature extraction parameters based on 

the root mean square (rms) magnitude of the EMG signal. The 

EMG data, obtained from a public database, had been measured 

from 2 muscles (one hand flexor and one hand extensor) of 5 

able-bodied participants performing 6 different movement 

tasks. Using optimization, we increased the offline movement 

classification accuracy by 3-5% for each participant and from 

79.91% to 92.25% overall. The value of one optimized 

parameter (threshold of Wilson amplitude) was strongly 

correlated with the rms magnitude of the EMG signal (R2=0.81). 

Other parameters were suspected to be related to signal noise, 

since no strong correlation with rms magnitude was observed. 

Future studies will refine the optimization approach and test its 

practicality and effectiveness for improving online classification 

accuracy with robotic interfaces. 

 
Clinical Relevance— Parameter optimization can potentially 

make EMG-based control more accurate and reliable by 

automatically accounting for variations in EMG signal quality 

across channels or time without changing the data collection 

procedure. 

I. INTRODUCTION 

Estimating movement intent is a critical component of 
providing users effective volitional control of robotic 
interfaces such as prostheses and exoskeletons [1, 2]. 
Electromyograms (EMG), electrical signals measured from 
muscles during contraction, are one of the most common bio-
signals used for estimating movement intent. Various artificial 
intelligence (AI)-based classification algorithms (i.e. 
classifiers) have been used by researchers to estimate intended 
movements using features extracted from EMG signals [e.g., 
3, 4]. The accuracy of movement classification depends on 
factors such as the classifier used, classifier parameters, types 
of features extracted, and correlation between features. 
Previous studies have reported the feature combinations and 
classifier parameters that tend to increase classification 
accuracy [5, 6]. 

A relatively understudied factor that affects classification 
accuracy is “values of feature extraction parameters”. Feature 
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extraction is performed using algorithms that compute a 
numerical value from a short (typically <500 ms) window of 
EMG data. Many feature extraction algorithms have 
parameters whose values are intended to be based on 
characteristics of the EMG signal. For example, commonly 
used EMG features like number of zero crossings (ZC) and 
Wilson amplitude (WAMP) have parameters whose values 
should be based on the EMG signal-to-noise ratio and 
magnitude, respectively.  

Previous studies have shown that the extracted feature 
values and movement classification accuracy can be highly 
sensitive to the values of feature extraction parameters [7]. 
Therefore, it is critical to assign appropriate parameter values 
to maximize classification accuracy. Unfortunately, in most 
cases, the EMG signal characteristics and feature extraction 
algorithm parameter values are not determined rigorously; 
rather, the parameters are typically assigned constant values 
across all data collection channels based on previously defined 
“best practices”. This is problematic because EMG signal 
characteristics can vary across users, channels, and time due to 
hard-to-control factors such as electrical noise from the 
device/environment, skin preparation, sensor location, and 
user anatomy (e.g., subcutaneous fat). Thus, there is a need for 
methods to determine optimal feature extraction parameter 
values that account for varying EMG signal characteristics 
each time the user dons the robotic interface. 

Numerical optimization is one potentially effective 
approach to compute feature extraction parameter values that 
maximize movement classification accuracy. Numerical 
optimization has been used in countless applications; the 
authors previously used numerical optimization to define 
parameters for a musculoskeletal model-based prosthesis 
controller [8, 9]. Movement classification often requires 
several EMG channels and, thus, defining several feature 
extraction parameter values; in this case, global numerical 
optimization algorithms are needed to increase the chance that 
a set of parameter values achieves a global (not local) 
maximum classification accuracy. 

In this study, our goal was to determine the extent to which 
movement classification accuracy could be improved by 
global numerical optimization of feature extraction parameters 
for each EMG channel, rather than applying the same generic 
parameters to all channels across all participants. Our analysis 
replicated that of a previous study on a publicly available 
dataset [3], except that we (1) computed feature extraction 
parameter values using simulated annealing, a common global 
optimization algorithm and (2) used a different classifier 
(rationale and description provided in Section II). We 
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computed parameter values for two optimization scenarios that 
maximized movement classification accuracy either for each 
participant separately or across all participants. Finally, we 
performed correlation analyses to see how parameter values 
related to physiologic EMG signal characteristics. 

II. METHODS 

A. Electromyography data 

We used the same data as Sapsanis, et al. [3], which 
included EMG data from 5 able-bodied participants. In their 
study, two bipolar EMG electrodes were placed on the skin, 
one over the flexor carpi ulnaris muscle and the other over the 
extensor capri radialis, longus and brevis muscles [10]. Each 
EMG signal was considered a “channel”; since there were 2 
channels per participant and 5 participants, there were 10 total 
channels. EMG data were recorded using a desktop system 
(Bagnoli, Delsys, USA) with an analog-digital conversion card 
(USB-6009, National Instruments, USA) at 500Hz using 
Labview software (National Instruments, USA) [11]. Each 
participant performed 30 trials each of 6 different hand 
movements (30 trials x 6 movements = 180 total trials). Each 
trial was 6 s long.  Like Sapsanis, et al. [3], before performing 
any procedures described below, the EMG data were filtered 
using a 4th order high pass Butterworth filter with a cutoff 
frequency of 15 Hz and an IIR notch filter of 50 Hz. 

B. Onset detection 

Onset detection of an EMG signal directly depends on the 
amount of noise in the signal. Like Sapsanis, et al. [3], we used 
a 40-ms sliding window to detect the onset. Onset was 

assumed when the integrated EMG,  𝐼𝐸𝑀𝐺 =
1

𝑁
∑ |𝑥𝑘|𝑁

𝑘=1  was 

greater than a threshold T1. 𝑥𝑘 is the 𝑘𝑡ℎ data sample, and 𝑁 
is the number of data samples in a 40-ms window. Since there 
were 2 channels for each trial, the earlier onset time between 
the two channels was considered the onset time for that trial. 

C. Data segmentation 

From the onset detection until the end of the signal, the data 
were segmented into smaller windows and the movement was 
classified for each window. Like Sapsanis, et al. [3], we chose 
overlapping 300-ms segmentation windows that were 
displaced by 30 ms (i.e. consecutive windows overlapped each 
other by 270 ms). Overlapping windows are commonly used 
for EMG-based interfaces (e.g., prostheses, exoskeletons) 
because they make the interface’s response to the user’s 
movement intentions closer to real time.  

D. EMG feature extraction 

The same eight features as Sapsanis, et al. [3] were 
extracted from each window and each EMG signal for 
movement classification. These features were IEMG, zero 
crossing, variance, slope sign changes, waveform length, 
Wilson amplitude, kurtosis, and skewness. Out of these 8 
features, two (zero crossing and Wilson amplitude) depend on 
the relative amplitudes of the EMG signal and noise. Zero 
crossing is calculated as: 

𝑍𝐶 = ∑ 𝑓(𝑥), where 

𝑓(𝑥) = {

1, ((𝑥𝑘 > 0 𝐴𝑁𝐷 𝑥𝑘+1 < 0)𝑂𝑅(𝑥𝑘 < 0 𝐴𝑁𝐷 𝑥𝑘+1 > 0))
𝐴𝑁𝐷

(|(𝑥𝑘+1 − 𝑥𝑘| > 𝑇2)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

for 𝑘 = 1,2,3, … N-1 

The optimal value for threshold T2 should be inversely 
proportional to the signal-to-noise ratio; if the noise amplitude 
is relatively high, then T2 should be increased to make sure 
that the ZC feature is independent of the noise. 

Wilson amplitude is calculated as: 

𝑊𝐴𝑀𝑃 = ∑ 𝑓(|𝑥𝑘+1 − 𝑥𝑘|)

𝑁−1

𝑘=1

 

𝑓(𝑥) = {
1  𝑖𝑓 𝑥 > 𝑇3
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

for 𝑘 = 1,2,3, … N-1  

The optimal value for threshold T3 should be directly 
proportional to the signal-to-noise ratio.  

Since the optimal values of thresholds T1, T2 and T3 
depend in part on the signal amplitude, the thresholds were 
computed as: 

𝑇1 = 𝑟1 × 𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙) 

𝑇2 = 𝑟2 × 𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙) 

𝑇3 = 𝑟3 × 𝑟𝑚𝑠(𝑠𝑖𝑔𝑛𝑎𝑙) 

where, 𝑟𝑚𝑠 is the root mean square of the EMG signal 
calculated over the entire trial, and 𝑟1, 𝑟2, and 𝑟3 are scaling 
parameters. Initially, we defined the values of these 𝑟-
parameters to be the same for all participants and all trials to 
represent the standard approach as described in Section I while 
best matching the thresholds used by Sapsanis et al. [3]: 𝑟1 =
0.5, 𝑟2 = 0.05, 𝑟3 = 0.05 (Figure 1). In subsequent steps, we 
used a numerical global optimization approach (Section II.F) 
to compute the r- parameter values. 

E. Movement Classification 

We used a support vector machine (SVM) algorithm for 
movement classification. SVM was used since it is more 
efficient than many other classification algorithms [12] and 
has been used to classify movement using EMG features [13, 
14]. The participant-specific classification accuracy with 
SVM was 3-9% higher that with the simple linear classifier 
used by Sapsanis, et al. [3] (Table I). We used a gaussian 
kernel in the SVM implementation.  

F. Global Optimization of Feature Extraction Parameters 

We used a simulated annealing global optimization 
algorithm [15, 16] to compute the values of 𝑟1, 𝑟2 and 𝑟3 that 
maximized a cost function (the classification accuracy). 
Simulated annealing was chosen because it can handle a non-
continuous cost function, making it more robust than some 
other global optimization algorithms.  

The values of the 𝑟 -parameters were optimized for each EMG 
channel in two steps (Figure 1). In Step 1, 𝑟-parameter values 
were computed in 5 separate optimizations to maximize the 
movement classification accuracy (Section II.G) for each 
participant; we used parameter values 𝑟1 = 0.5, 𝑟2 =
0.05, 𝑟3 = 0.05 for all channels as our initial guess. In Step 2, 
a single optimization was performed to compute 𝑟-parameter 
values that maximized movement classification accuracy 
across all participants (that is, the overall classification 
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accuracy), using 𝑟-parameter values computed from Step 1 as 
our initial guess. 

Since optimization is computationally expensive, we 
segmented the data into non-overlapping 300-ms windows 
during Steps 1 and 2 of the optimization process. After 
obtaining the optimal values of 𝑟-parameters from each 
optimization step, we classified movements using overlapping 
windows in the segmentation as described in Section II.D; this 
allowed us to compare classification accuracy between 
optimized and non-optimized 𝑟-parameter values.  

G.  Classification Accuracy 

 We computed the movement classification accuracy for 
three different scenarios: (1) constant 𝑟 -parameters, (2) 𝑟 -
parameters computed from optimization Step 1, and (3) 𝑟 -
parameters computed from optimization Step 2. For each 
scenario, one SVM model was trained and tested for each 
participant (5 participant specific SVM models) and one SVM 
model that was trained and tested using data from all 
participants. With the participant-specific SVM model, 
movement classification accuracy was calculated for each 
participant using a 5-fold cross validation approach. With the 
across-participant SVM model, the “overall” movement 

classification accuracy was calculated using a 10-fold cross 
validation approach, since there was more data when 
combined across participants. We included the classification 
accuracy results from Sapsanis, et al. [3] for reference. 

III. RESULTS 

Table 1 displays the movement classification accuracy 

before and after optimization. The participant specific 

accuracy values achieved by Sapsanis, et al. [3] are listed for 

reference, though they failed to mention the values of T1, T2 

and T3; hence the 𝑟-parameters for their study could not be 

computed. Changing from a simple linear classifier to SVM 

with constant 𝑟-parameter values (𝑟1 = 0.5, 𝑟2 = 0.05, 𝑟3 =
0.05) increased the classification accuracy of each participant 

compared to results from Sapsanis, et al. [3]. Optimizing the 

𝑟-parameters to maximize each participant’s classification 

accuracy (optimization Step 1) increased each participant’s 

movement classification accuracy by 3-5%. Overall accuracy 

also increased after optimization Step 1 from 79.91% to 

89.24% even though the aim of this step was only to increase 

the accuracy of each participant independently. Step 2 of 

optimization further increased the overall accuracy to 

92.25%, a 12.34% increase compared to the overall accuracy 

when the same 𝑟1, 𝑟2 and 𝑟3 values were used for all 

channels. Not surprisingly, since the aim of Step 2 was only 

to increase the overall accuracy, the classification accuracy of 

each participant decreased from Step 1 to Step 2 by up to 2% 

for some participants. 

IV. DISCUSSION 

We have shown that numerical optimization of select 
feature extraction parameters can be an effective way to 
address the problem of inconsistent signal-to-noise ratio across 
EMG channels. In clinical applications, optimization could be 
performed as a calibration step at the time a patient is fitted 
with an exoskeleton or prostheses. Optimization automatically 
overcomes issues related to data quality without changing the 
data collection process, reducing demands for data collection 
expertise and precision on practitioners. In this way, 
optimization could lower barriers to commercialization and 
clinical translation of EMG-driven robotic interfaces.  

 To understand the relationship between EMG data 
characteristics and the optimized values of  𝑟1, 𝑟2 and 𝑟3, we 
assessed the linear correlation between the thresholds (T1, T2, 
T3) post optimization step 2 and mean 𝑟𝑚𝑠 values of the 

TABLE I. MOVEMENT CLASSIFICATION ACCURACY (%) 

Classification 

accuracy 

Sapsanis, et al. [3] (r -

parameters unknown) 

r1 = 0.5, 

r2 = 0.05, 

r3=0.05 

Step 1: r -parameters 

optimized per participant 

Step 2: r -parameters optimized for 

all channels and all participants 

Participant 1 85.24 91.52 95.74 95.84 

Participant 2 83.88 92.2 97.39 95.81 

Participant 3 84.82 89.05 93.40 93.70 

Participant 4 86.92 90.44 93.82 93.12 

Participant 5 92.38 95.9 98.09 97.65 

“Overall”                    

(across all participants) 
Not reported 79.91 89.24 92.25 

  

Figure 1. Flow diagram of the optimization process. Step 1 optimizes 
𝑟1, 𝑟2 and 𝑟3 to maximize movement classification accuracy for that 
participant. Step 2 optimizes 𝑟1, 𝑟2 and 𝑟3 to maximize movement 
classification accuracy across all participants. 
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channels. Linear correlation was quantified as the coefficient 
of determination, R2. Fig. 2 shows a strong correlation (R2 = 
0.81) between the optimal thresholds of WAMP (T3) and the 
mean 𝑟𝑚𝑠 value of the channels. This observation is consistent 
with our expectation that an optimal T3 value should be 
directly proportional to the signal-to-noise ratio. The 
observation is physiologically reasonable since WAMP 
depends on the absolute difference between consecutive data 
points of the signal, and a signal with a higher signal amplitude 
can afford to have a higher WAMP threshold.  

The correlations of post-optimization thresholds T1 and T2 
with mean 𝑟𝑚𝑠 value of each channel were weak, with R2 
values of only 0.48 and 0.41, respectively. This was likely 
because both thresholds are more dependent on the noise 
amplitude rather than the signal amplitude. In this case, 
optimizing T1 and T2 based on a different signal characteristic 
than 𝑟𝑚𝑠 may further improve classification accuracy and 
elucidate how the thresholds relate to signal characteristics. 
Additionally, changing threshold T1 affects the onset of the 
signal, the data points that compose each window, and, thus, 
the values of all the extracted features; determining how the 
threshold T1 affects the classification accuracy requires a more 
in-depth analysis that was beyond the scope of our study.  

Although we were able to increase classification accuracy, 

our study had certain limitations. First, optimization is 

computationally expensive, and the calibration process using 

optimization to increase accuracy can take hours to converge. 

Optimization time, though, can be reduced by using 

techniques such as parallel processing. Second, we used one 

optimization algorithm (simulated annealing), one 

classification algorithm (SVM), and only 8 EMG features. It 

is possible that other optimization algorithms, classification 

algorithms, and features might generate better classification 

accuracy and should be explored in future studies. The aim of 

this study, however, was only to test our hypothesis that 

optimization of select parameters in the feature extraction 

process can increase classification accuracy, not to generate 

the highest possible accuracy. 

V. CONCLUSION 

We developed and tested a global numerical optimization 

framework that can address the problem of EMG data quality 

at the feature extraction stage, without changing the data 

collection process itself. Optimization increased movement 

classification accuracy by 3-5% for each participant and by 

12% overall. We expect that optimization would be simple 

and inexpensive to implement as a calibration step for EMG 

driven robotic interfaces to improve performance and user 

satisfaction. Future studies should also (1) investigate the 

relationship between optimized parameters and signal 

characteristics, and (2) test other optimization approaches to 

maximize movement classification accuracy.  
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Figure 2. Wilson amplitude threshold vs mean RMS values of all 
channels. The positve correlation indecates that signals with higher 

strength can afford to have a higher threshold for Wilson Amplitude. 
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