
Wavelet-based CNN for Predicting PAP Adherence Using Overnight
Polysomnography Recordings: a Pilot Study

Mingxi Lei1, Tom Maxim2, Edwin M. Valladares3, Eric Kezirian4 and B. Keith Jenkins1

Abstract— Obstructive sleep apnea (OSA) is a common
sleep disorder. Positive airway pressure (PAP) therapy is
the first-line treatment, while its effectiveness is significantly
limited by incomplete adherence in many patients. This work
aims to find a predictive association between data from
in-laboratory sleep studies during treatment (PAP titration
polysomnogram, or PSG) and PAP adherence. Based on a PAP
titration PSG database, we present a pipeline to develop a
wavelet-based deep learning model and address two challenges.
First, to tackle the problem of extremely long overnight PSG
signals, it randomly draws segments and extracts features
locally. The global representation for the entire signal is
achieved by local feature P-norm pooling. Second, to tackle the
problem of limited dataset size, the pre-trained EfficienNet-B7
is used as an unsupervised feature extractor to transfer
ImageNet knowledge to PSG signals in the wavelet domain.
The trained pipeline achieves 78% balanced accuracy and
83% AUC on the test set using airflow and frontal EEG
signals, which, we believe, is a compelling result as a pilot study.

Clinical relevance— Polysomnogram signals may improve
clinical treatment of OSA by identifying patients with low
likelihood of PAP adherence, enabling intensive efforts to
improve adherence or consider alternative therapies.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common disorder char-
acterized as the symptomatic, repeated blockage of breathing
during sleep. Symptoms of OSA include daytime sleepiness,
fatigue, and decreases in cognitive function. OSA also is
associated with cardiovascular disease and other health-
related consequences.

OSA diagnosis is established with an overnight sleep
study, and historically the most common type of sleep study
has been the polysomnogram (PSG). The PSG includes
collection of multiple data signals during sleep, including
electroencephalogram (EEG), electrooculogram (EOG), elec-
trocardiogram (ECG), airflow and oxygen saturation (SpO2).
The PSG determines the presence or absence of OSA as well
as the severity of OSA.

Positive airway pressure therapy (PAP) is considered first-
line OSA treatment because of its low risks and high efficacy
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[1]. PAP delivers positive pressure through the nose and/or
mouth, functioning as a pneumatic splint to maintain an open
upper airway. One of the challenges of PAP is the need to
wear it comfortably during sleep. Although many patients
do achieve success with PAP, the most common clinical care
pathway involves patients receiving PAP at home to use for
the first time on their own. Patients undergoing PSG for
diagnosis of OSA may show clear evidence of OSA in the
first portion of the night, such that the team in the sleep center
may introduce PAP on the same night. This combination
of PSG for diagnosis and initiation of treatment is termed
a split-night PSG and allows a sleep center to evaluate a
patient’s clinical response to PAP initiation and changes in
PAP settings (for example, the level of PAP pressure).

Although the goal is for patients to use PAP all night, every
night, current clinical criteria for adequate PAP adherence is
usage on at least 4 hours a night for at least 70% of all nights.
Over the past decade, technological advances have enabled
remote monitoring of PAP adherence. Substantial efforts
are devoted to improving PAP adherence, but unfortunately
approximately 30% of patients do not tolerate PAP and must
consider other options. Because of the important negative
consequences of untreated OSA, understanding early in the
course of treatment whether individual patients were unlikely
to tolerate PAP would allow clinicians to initiate aggressive
attempts to enhance PAP adherence or to pursue alternative
therapies and treat patients more effectively.

Recently, deep learning has been gaining tremendous at-
tention due to their outperformance for various tasks, includ-
ing healthcare applications. Regarding OSA, many previous
studies have developed deep learning systems to diagnose
OSA using PSG signals, while there have been no previous
studies examining PAP adherence using PSG signals during
PAP treatment. The aim of this study is to investigate
whether there are associations between PAP titration PSG
signals (treatment portion of the split-night PSG) and PAP
adherence using a deep learning approach, and whether the
former is predictive of the latter. We typically face two
challenges. First, PSG data are limited to train a deep net-
work, especially given that PSGs with PAP titration are not
performed in all patients. Secondly, overnight PSG signals
are extremely long, so that regular deep learning architectures
are not feasible for them. The method for addressing these
challenges are inspired from three previous works about
processing extremely large histopathology images [2], [3],
and long documents classification [4]. The sections below
are organized as follows. Section II reviews some related
previous work. Section III shows the pipeline for processing
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overnight signals and developing predictive models from
them. Section IV presents the results of 5 investigated PSG
channels. Section V discusses and compares the method in
this work with previous studies and conclusions are given in
Section VI.

II. RELATED WORK

Previous studies about PAP adherence are limited, even
though its overall status among OSA patients did not improve
over more than 20 years. Early investigations identified
predictive factors using conventional statistical analysis. The
severity of OSA was identified to be related to PAP adher-
ence using t-test, Mann-Whitney U -test, and χ2-test; patients
with less severe OSA are more likely to abandon PAP
treatment [5]. Another study revealed that age is related to
PAP adherence using Pearson correlation coefficients and 2-
tailed t-test [6].

Machine (deep) learning might be an effective approach
with available “big-data.” However, a thorough search also
only yields limited relevant studies. Three studies [7], [8],
[9] are found and will be discussed in Section V.

III. METHODOLOGY

A. Definition of PAP Adherence

We adopt the common clinical definition of PAP Adher-
ence as >4 hours/night on ≥5 nights/week during patients’
overall treatment periods indicated in their PAP usage report.
because it generally supports significant improvement for
OSA [1], [10]. Let y+ be the notation of good adherence;
y− be the notation of poor adherence.

B. Dataset

This study was approved by the University of Southern
California institutional review board. A retrospective cohort
database was assembled, comprising data from 202 study
participants with split-night PSGs performed at the Keck
Medicine of USC Sleep Disorders Center and with PAP
adherence tracking using the AirView system (Resmed, San
Diego, California, USA). Eighty-nine and 113 patients were
labeled as y+ and y−, respectively, according to their PAP
usage report. All patients received PAP treatment at least for
30 days, commencing after a medical evaluation and split-
night PSG (described below). The split-night PSG consisted
of two portions: diagnostic (without PAP) during the first
portion, followed by PAP titration (with PAP). PSG data was
collected during both stages. This study used data from the
PAP titration portion only.

The dataset is randomly divided into Training Set (80%)
and Test Set (20%). The training set is used to select optimal
models and tune model parameters; the test set is used only
for reporting the performance of models trained using the
training set. We investigated 5 PSG channels: 1) SpO2, 2)
frontal EEG, 3) central EEG, 4) occipital EEG, 5) airflow;
the sample rates for them are 16Hz, 64 Hz, 256 Hz, 256 Hz,
and 256 Hz, respectively.

C. Proposed framework overview

An overview of the proposed pipeline for developing
models from PSG signals is given in Fig. 1, generally
including 4 stages: 1) random subsequence sampling; 2)
wavelet-based EfficientNet activated feature extraction; 3)
feature engineering; 4) final classification.

D. Random subsequence sampling

Since overnight sleep studies produced extremely long-
length signals, it is inevitable to employ deep learning
architecture locally first. The random sampling method is
adopted to generate local segments from the entire overnight
treatment-stage signals. We refer to the local segments as
subsequences in the following analysis. The number of sub-
sequences for each signal is determined adaptively according
to the length of entire signals, calculated by a simple equation
as follows:

N =

⌊
T

Tsub

⌋
(1)

Where T is the length of the entire signal, Tsub is the length
of the subsequence, and N is the number of subsequences.
This is designed as the trade-off between the computation
cost and coverage of sampled subsequences. The entire
signals can be generally covered without losing too much
information, using the equation above (Fig. 2).

E. Downsample

Useful information typically lies within low-frequency
ranges. Hence, downsample is used after random sampling
to remove high-frequency components, and also reduce the
data dimensionality. Multi-level discrete wavelet transform
(DWT) is adopted to decimate subsequences. DWT has the
advantage of dealing with non-stationary time series. Bio-
electric time series usually includes sudden transitions, such
as heartbeats in ECG. Comparing to classical Fourier-based
filters, DWT can preserve the peak locations and their shape.

The choice of wavelets and level of DWT decomposition
need to be determined for this step. We use the Daubechies-5
(db5) wavelet for the trade-off between its vanishing moment
and oscillation of its wavelet function. Since SpO2 channel
is already under a very low sample rate, no DWT is needed;
DWT decomposition levels for the other 4 channels are speci-
fied proportional to their sample rate so that processed signals
are under identical Nyquist sample rates. For instance, after
using 2-level DWT decomposition, the Nyquist sample rate
of downsampled airflow signal is reduced to 64

2×2 = 16Hz;
using 4-level DWT decomposition, the Nyquist sample rate
of downsampled EEG signal is reduced to 256

2×2×2×2 = 16Hz.

F. Wavelet-based feature extraction

A 1-dimensional (downsampled) subsequence is trans-
formed into the 2-dimensional time-frequency domain using
continuous wavelet transform (CWT), i.e., the two axes
of the response image correspond to time and frequency
resolutions. We employ the complex Morlet wavelet, the
default choice for wavelet analysis [11] for its simplicity
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and equal spread in time and frequency. It is constructed by
a complex exponential multiplied by a Gaussian envelope:

ψ(t) = π− 1
4 e−

t2

2 ej5t (2)

The complex Morlet wavelet produces a complex-value re-
sponse image. The absolute value of it is called a scalogram,
which provides visual characteristics of the subsequence
about time, frequency, and amplitude (Fig. 3). The real
part and imaginary part of the complex-value response also
provide information of phase.

Visual features are then extracted using a convolu-
tional neural network (CNN). We choose the pre-trained
EfficientNet-B7 as the feature extractor for two reasons. First,
it receives a large size of input (600×600), which is able to
cover longer subsequences. Secondly, according to a recent
study, better ImageNet models transfer better on other tasks
[12]. Considering the ImageNet leaderboard and model size,
EfficientNet-B7 is a good choice.

Frequencies of interest are set logarithmically spaced
between 0.1 Hz to 4 Hz. The response images of all sub-
sequences are fed into EfficientNet-B7 to obtain 2560 CNN-
activated features. Since the CWT responses are complex-
valued and CNN accepts real-valued inputs only, each
complex-valued input image is transformed into a 3-channel
real-valued volume to make it compatible with the pre-
trained EfficientNet-B7, where the 3 channels represent the
real part, imaginary part, and absolute value, respectively.
Such a data format also mimics the structure of colored
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Fig. 3: Input Volume Preparation

images with RGB (red, green, blue) channels, each of
which provides insights of subsequences individually, but
also provides fully joint insights together with other channels
about time, frequency, amplitude, and phase in the wavelet
domain (Fig. 3).

G. Feature engineering

Each overnight signal is represented by a feature matrix
F ∈ RN×2560 after feature extraction. All subsequence-level
feature vectors should be combined and aggregated to obtain
the global patterns of the entire overnight signals. P-norm
pooling is adopted as follows:

fd = (
1

N

N∑
i=1

(Fi,d)
p)

1
p (3)

where Fi,d is the d-th feature value at the i-th subsequence,
fd is the pooled d-th feature value, and the parameter P = 3
as suggested in a theoretical study [13]. Each overnight signal
then is represented as a pooled feature vector f ∈ R1×2560.

Feature selection is further conducted to select a subset
of informative features, including 3 sequential analyses (Ta-
ble I): 1) feature stability assessment, 2) univariate feature
analysis, and 3) multivariate feature analysis.

Feature stability refers to the robustness with respect to
data sampling and to its stochastic nature [14]. Specifically,
in this work, features are expected to be consistent across
different random seeds for the random sampling. Unstable
features that vary easily by the changing of subsequences
positions should be excluded to avoid unreliable predictions.
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TABLE I: Number of Selected Features in Each Step

SpO2 Airflow Frontal Cenral Occipital
EEG EEG EEG

Feature
Stability
Assessment

1930 2546 2555 2547 2548

Univariate
Feature
Analysis

1414 1387 591 1314 1225

Multivariate
Feature
Analysis

56 63 49 63 57

This is accessed using the intraclass correlation coefficient
(ICC). We generated 2 reference feature sets by replicating
the feature extraction twice with different random seeds.
Intuitively, stable features should not change a lot, comparing
to the 2 reference sets. The ICC for each feature is calculated
from 3 feature sets. Features with ICC < 0.75 are considered
to be unstable and are excluded. Stable features help improve
the model performance and reproducibility.

Univariate feature selection examines every feature indi-
vidually to assess the relevance to PAP adherence. Features
are scored using the area under the curve (AUC) from 5-fold
cross-validation of univariate logistic regression. We exclude
irrelevant features with AUC ≤ 0.5.

Multivariate features analysis not only assesses the rel-
evance to the PAP adherence but also considers the inter-
action between features in the meantime and removes re-
dundant ones. We used the minimum-redundancy-maximum-
relevance (mRMR) algorithm [15] to select the final feature
subset. Specifically, a parallel ensemble version of it [16]
was adopted to mitigate the drawback of its greedy heuristic
property and find a more robust feature subset. Twenty en-
sembles are implemented in parallel. Each ensemble selects
the top 5‰ for feature sets extracted from SpO2, airflow,
central EEG, and occipital EEG channels, while for frontal
EEG the percentage is relaxed to 10‰ because its feature
set is much smaller after the prior two steps (Table I).

H. Final classification

A LASSO regression model is fit using the selected
features. The glmnet package in R is adopted to tune the
model efficiently. Regularization parameter λ is determined
by 5-fold cross-validation on the training set.

I. Inference Strategy

Unseen test data samples pass through the trained pipeline
to infer its predicted output, while we increase the number
of subsequences extracted from the entire signal to produce
a more accurate result. The pipeline is run 5 times in parallel
with different random seeds for each data sample to output
5 predictions. The final prediction is given by their average.

IV. RESULTS

Five models are trained using the 5 investigated PSG
channels, where each model is trained with a specific pa-
rameter set as described in Section III. Performance of them

is reported using multiple metrics (Table II): precision, recall,
F1-score, balanced accuracy, and AUC.

The overnight SpO2 and occipital EEG signal are not
likely to be related to the PAP adherence since the AUC
scores are around 0.5. The central EEG signal shows weak
relation to the PAP adherence, reporting an AUC of 61% on
the test set. Both airflow and frontal EEG signal achieve an
AUC of 76%, indicating a strong predictive association with
the PAP adherence. We further develop an ensemble model
of the airflow and frontal EEG signal, i.e., the predictions of
the 2 PSG channels are combined by calculating the average
of them to obtain a better prediction. The ensemble model
reports the highest AUC of 83% and balanced accuracy of
78% (Table II).

Besides measuring the metrics above, probability estimates
for test samples provide insights into model performance as
well. The LASSO regression is a probabilistic model, where
the probability of y+ is given by the sigmond function

P (y+|f) =
1

1 + exp−β·f
(4)

where β are the model parameters for LASSO regression.
Ideally, predictions for patients with class y− should be
close to 0, while those with class y+ should be close
to 1. Visualizations of the distribution of P (y+|f) − 0.5
(i.e., distance to the decision boundary) for the test set
is given in Fig. 4. Negative class samples (y−) received
better predictions since they are far away from the decision
boundary (P (y+|f) = 0.5).

V. DISCUSSION

This study has demonstrated that PAP adherence is as-
sociated with a combination of airflow and frontal EEG
signals during PAP titration. To our knowledge, this is the
first study of its kind. PSG signals are complex and noisy
data, with considerable physiological variation during the
overnight study.

Previous PAP adherence studies using machine learning
have focused on early PAP usage patterns over months to
detect long-term PAP non-adherence [7], [8] and driving
performance data for its association with the prior night’s
PAP usage [9]. Our work broadens the scope of machine
learning research to offer another tool (at the absolute
first use of PAP) to identify individual patients who were
unlikely to tolerate PAP. As described earlier, this could
allow clinicians to initiate aggressive attempts to enhance
PAP adherence (avoiding the wasted patient and clinician
resources on patients who will have no difficulties with
PAP adherence) or to pursue alternative therapies and treat
patients more effectively.

This study has important limitations. First, many patients
receive PAP therapy without a PAP titration PSG, so wide-
scale use of this approach would require a change in practice
patterns or else collection of airflow (often collected by PAP
machines) and frontal EEG data (not currently collected
by PAP machines). Future research may examine signals
from diagnostic PSG or home sleep apnea tests. Second,
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TABLE II: Model Performance

Precision Precision(-) Recall Recall(-) F1 F1(-) Balanced Accuracy AUC
SpO2 0.50 0.65 0.31 0.80 0.38 0.71 0.56 0.46

Airflow 0.62 0.71 0.50 0.80 0.55 0.75 0.65 0.76
Frontal EEG 0.73 0.81 0.69 0.84 0.71 0.82 0.76 0.76
Central EEG 0.44 0.65 0.50 0.60 0.47 0.63 0.55 0.61

Occipital EEG 0.42 0.62 0.31 0.72 0.36 0.67 0.52 0.52
Airflow + Frontal EEG 0.79 0.81 0.69 0.88 0.73 0.85 0.78 0.83
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Fig. 4: Assessment of Probability Estimates. Error bar rep-
resents the standard deviation of outputs of 5 parallel runs
with different random seeds

this research comes from a single center, so the work
would benefit from inclusion of larger datasets from multiple
centers to refine the algorithm and evaluate generalizability.

VI. CONCLUSION

This work investigates the predictive association between
PAP titration PSG signals and PAP adherence in OSA. We
report a pipeline to process overnight PSG signals using
Wavelet-based Deep CNN feature representation. The airflow
and frontal EEG combined show predictive power for PAP
adherence, evaluated using multiple metrics. Further study
can investigate whether diagnostic PSG signals or other sleep
study data predict PAP adherence.
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