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Abstract— The voltage criteria used to diagnose left ventric-
ular hypertrophy (LVH) in the chest and limb leads are by
no means absolute. In addition to QRS voltages, QRS axis
and duration, and P wave characteristics, repolarization (ST-
T) changes have been focused attention due to their represent-
ing left ventricular overload. Vectorcardiography (VCG) has
been studied specifically on its repolarization abnormality. The
present study aims to devise spatial feature extraction of VCG
and assess it in the LVH classification task. A minimum volume
ellipsoid enclosure was applied to six segments obtained from
upstroke and downstroke of each P, QRS, and T loops of a
single-beat VCG. For the evaluation, VCG and 12 lead ECG
dataset along with LVH labels of 61 subjects were derived from
public open data, PTB-XL. These classification performances
were compared with the LVH diagnosis criteria in the standard
12 lead ECG. As a result, the Random Forest classifier trained
by the proposed spatial VCG feature resulted in accuracy of
0.904 (95% confidence interval: 0.861-0.947) when the class-
balanced dataset was evaluated, which slightly exceeded the
feature of 12 lead ECG. The feature importance analysis
provided the quantitative ranking of the spatial feature of VCG,
which were practically similar to those of ECG in the LVH
classification task. Since the VCG are spatially comparable with
three-dimensional data of CT, MRI, or Echocardiography, VCG
will shed light on the spatial behavior of electrical depolariza-
tion and repolarization abnormalities in cardiac diseases.

I. INTRODUCTION

Heart problems such as high blood pressure, diabetes,
valvular heart disease like stenosis or regurgitation, arrhyth-
mias, enlargement of the aorta accompany left ventricular
hypertrophy (LVH). LVH develops silently over several years
without symptoms and can lead to severe problems such as
heart failure, sudden cardiac death and, ischemic stroke. A
routine ECG is used for diagnosing LVH.

The clinical studies have shown that Vectorcardiogra-
phy (VCG) is advantageous over ECG signal analysis for
detecting repolarization variability [1], myocardial injury
after coronary surgery [2] or the cardiological diagnosis in
general repolarization abnormality [3]. However, for the LVH
diagnosis, there has also been a longstanding disagreement
as to whether the ECG or VCG spaces appear as more
informative, with reports showing the VCG as better [3],
[4], similar [5] or, poorer [6] than the ECG.

A VCG depicts the orientation and strength of a single
cardiac vector representing overall cardiac activity through-
out the cardiac cycle in orthogonal three-dimensional space.
Bonomini et al. [7] studied these VCG features in the
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TABLE I: Two Datasets with LVH Labeled Data
Dataset Name Class Ratio(LVH:normal) Total Subjects

LVH 122 1:1 122
LVH 366 1:5 366

TABLE II: Description of Six Segmentation
Segment Name Description

seg p1 P wave onset to P wave peak
seg p2 P wave peak to P wave offset
seg r1 QRS complex onset to R peak
seg r2 R peak to QRS complex offset
seg t1 T wave onset to T peak
seg t2 T peak to T wave offset

transverse and frontal planes to construct LVH indexes and
compared their diagnostic performance in the ECG and VCG
spaces. Hasan et al. [1] surveyed VCG features such as
total cosine R to T, loop area, or azimuth and elevation.
Nevertheless, these approaches are not successful to elucidate
diagnostic features of VCG. By nature, a VCG contains
spatial features not observable in the standard 12 lead ECG.
For example, each wave of P, ORS, or T is not symmetrical
in any of the scaler ECG waveforms. Such characteristics
may relate to action potential waveform as well as the three-
dimensional complicated structure of the heart.

This study aims to quantify three-dimensional character-
istics of P, QRS, and T loops in VCG, and such analysis
may shed light on electrical propagations characteristic of
the LVH. To view spatial characteristics of P, QRS, and T
loops, a feature extraction method using minimum volume
ellipsoid enclosure (MVEE) was applied to six segments
of a single-beat VCG which are upstroke and downstroke
of each P, QRS, and T loop. To train and evaluate the
classification model, VCG and 12 lead ECG dataset with left
LVH labels were collected from PTB-XL. Our results showed
the performance difference in two different features: the
proposed spatial VCG and the standard 12 lead ECG criterion
for LVH classification. The trained model was analyzed by
feature importance to find and validate the clinical relevance
between the spatial features of VCG and LVH.

II. METHODS

A. Dataset

The target dataset was collected from PTB-XL in Phys-
ioNet. [8], [9] The open dataset includes heart disease labels
and standard 12 lead ECG for 10 seconds from a subject at
500[Hz]. In this study, a single heartbeat was considered as
a sample, resulting in approximately 10 data samples from
a subject.
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Fig. 1: Six segmentation on the ECG lead X of VCG Fig. 2: Six segmentation on VCG

(a) P wave loop: seg p1 and p2 (b) QRS Complex loop: seg r1 and r2 (c) T wave loop: seg t1 and t2
Fig. 3: A sample of the proposed spatial feature of VCG via minimum volume enclosing ellipsoid to six segments

First, VCG was derived from 12 lead ECG using Kors
regression transformation which was reported as the most
accurate VCG approximation among five different transfor-
mation methods. [10]

Next, the labeled data of LVH and normal were selected
by filtering PTBXL as follows. The LVH labeled data, 100%
LVH and 0% for the other types, were selected. Likewise, the
normal labeled data were selected, which has only 100%
normal for the label. Both labeled data were also limited
to the data verified by at least one cardiologist. The above
process filtered the original dataset into 61 subjects with the
LVH label and 5874 subjects with the normal label.

This class ratio of the obtained labeled data is highly
imbalanced. Concerning the imbalanced class which badly
affects the performance of machine learning, two under-
sampled datasets were derived for evaluation in this study
as shown in Table. I. The undersampled data were chosen
randomly.

B. Proposed Feature Extraction
The proposed spatial features are a total of 81 spatial

features from a single-beat VCG.
1) Segmentation: VCG represents the three primal ECG

waveforms (P wave, QRS complex, and T wave) as loop-
shaped sequences in three-dimensional space. Based on
the observation of each loop, the spatial morphologies are
asymmetrical. This is because the first half and the second
half of each loop are derived from different heart activities.
For an example of P wave, the electrical signal begins in
the sinoatrial node which is located in the right atrium and,

travels to the right and left atria, causing them to contract and
pump blood into the ventricles. Because of this asymmetric
phenomenon, the loop of P wave can become asymmetric by
its nature.

Accordingly, our proposed method divides each of the
waves into two parts before and after the peak value as
shown in Table. II. The detection algorithm for offset and
peak points is the wavelet transform method against the lead
X which is equivalent to the lead I. [11] Each wave composes
a loop in three-dimensional space, meaning the onset point
should be close to the offset point in the three-dimensional
space. Thus, the onset value should be determined by the
least euclidian distance to the offset value. The least euclidian
distance is searched in the range [α,β] where β = (the time
t at the peak value), α = (β−2∆), ∆ = (the time t of offset
- β). An example of this segmentation method is shown in
Fig.1 and Fig. 2,

2) Spatial Feature Computation: The MVEE [12] is ap-
plied to each segment for extracting the spatial features as
shown in Fig. 3.

First, the half loop of each segment is virtually comple-
mented for making it a complete loop. Because the original
trajectory of each segment is a half loop, applying an ellip-
soid enclosure to the original data points causes misfitting.
Thus, the preprocessing is applied by adding virtual points
that are origin symmetric points to the original data points in
the segment. The virtual points for each segment are shown
by dots in Fig. 3.

Second, MVEE is applied to each segment to computes the
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ellipsoid that encloses N points in a D-dimensional space.
In the case of our study, N is the data points of the sum
of the original VCG and the complemented VCG, and D is
three.

Third, the two types of spatial features, the rigid transfor-
mation and the ellipsoid shape, are extracted from a single
estimated ellipsoid. The rigid transformation is composed
of positional and postural transformation. The positional
feature is given by the center coordinates (x, y, z) ∈ R(3) of
the estimated ellipsoid. This represents the average voltage
within the segment. The postural information is given by
the rotation matrix of the ellipsoid. The postural feature,
(roll, pitch, yaw) ∈ S(3) angles, can be computed from
the rotation matrix. The ellipsoid shape is the components
of ellipsoid such as the three axes, the maximum area, and
the volume of the estimated ellipsoid. Adding them up, 11
features are computed for each segment.

Finally, the relative angles between the longest axes of the
estimated ellipsoids are computed. The six ellipsoids provide
15 relatives angles by taking the combinations from them.

C. Evaluation
1) Machine Learning and Interpretation: The machine

learning model was trained using the dataset and the pro-
posed features for LVH classification problems. In our meth-
ods, the classifier was selected as a tree-based classifier,
Random Forest. [13] Tree-based machine learning methods
are based on decision trees built by recursively splitting
a training sample, using different features from a dataset
at each node that splits the data most effectively. These
unique characteristics of the tree-based method enable model
interpretation via feature importance, which is calculated as
the decrease in node impurity, how well the trees split the
data, weighted by the probability of reaching that node. The
node probability or feature importance can be calculated by
the number of samples that reach the node, divided by the
total number of samples.

2) Data Split: The dataset is split into training set, devel-
opment set, and test set by not the sample ID but the subject
ID. First, the dataset was divided into test data and the other
data by 10 fold stratified cross-validation. Then, the other
data were divided into training data and development data
by 5 fold stratified cross-validation. Using this data split, the
nested cross-validation was conducted: the former split was
used for the outer loop while the latter split was used for the
inner loop. Among the five of trainings in the inner loop,
hyperparameter tuning was held by grid search in a single
training process using training and development sets. Then
the best performing parameter among five trials was chosen
for evaluating the performance on test data. The outer loop
repeats the inner loop process ten times. Then, the overall
performance was computed by ten of the test performances.

3) 12 lead ECG feature for comparison: To compare the
proposed spatial features of VCG to another feature in the
LVH classification task, this study adopted the features based
on the diagnostic criteria of LVH using a standard 12 lead
ECG. The diagnostic criteria include amplitude and temporal

Fig. 4: Classification Performance: VCG vs 12 lead ECG

information, such as voltage criterion and QRS duration
in specific leads. [14] Of all 47 feature candidates, only
one feature was excluded, which was based on the non-
trivial pointing system. Thus, a total of 46 feature values
were calculated for each sample data. In the practice using
diagnostic criteria, the LVH is judged by whether or not the
value of each feature exceeds the threshold, but in our study,
the feature is not binarized. This is because Random Forest
can learn such a threshold from the data, so the keeping
original value (float) should provide better performance.

III. RESULTS

A. Classification Performance

The results of LVH classification on the test dataset is
shown in Fig. 4. The outliers were determined if the result
was outside of the range of 1.5 times the interquartile range
above the upper quartile and below the lower quartile.

In evaluating LVH 122 with 95% confidence interval, the
average accuracy and the macro average F1 score resulte
in 0.904 (CI: 0.861-0.947) and 0.903 (CI: 0.860-0.946) for
the proposed VCG spatial feature, and 0.867 (CI: 0.813-
0.920) and 0.866 (CI: 0.812-0.919) for the 12 lead ECG
feature. Likewise, in LVH 366, the the average accuracy
and the macro average F1 score are 0.932 (CI: 0.918-
0.946) and 0.872 (CI: 0.838-0.906) for the proposed VCG
spatial feature, and 0.935 (CI: 0.913-0.957) and 0.885 (CI:
0.826-0.943) for the 12 lead ECG feature. The statistical
significance was not recognized due to the high variance.

B. Feature Importance for LVH Classification

The top-ranked 30 of feature importances of the trained
Random Forest using LVH 366 data are shown in Fig.5.

IV. DISCUSSION

Since the test performance varied widely, it is difficult
to conclude whether our proposed VCG spatial feature is
superior or inferior to the standard 12 lead ECG criterion in
the LVH classification task. This may be caused by the small
number of LVH patients in the dataset. In our evaluation
using 10-fold cross-validation, only about 6 subjects with
LVH were included in a test set. Additional data collection
of the labeled data of LVH is required to further study.
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(a) Proposed VCG spatial features (b) Standard 12 lead ECG criterion for LVH diagnosis
Fig. 5: Top 30 feature importance of the trained models for Left Ventricular Hyptertrophy classification

(a) (b)
Fig. 6: Distribution of features in LVH vs normal labels

In a recent paper on LVH classification where the class
ratio of the labeled dataset is almost 1:1, a simple machine
learning model has shown 71.4% accuracy using standard 12
lead ECG features. [15] This performance difference to our
results should not be negligible. One of the potential reasons
is that this study excluded the labels of complications,
which clears the hyperplane of the classifier. We intentionally
filtered the data to obtain higher accuracy in classification,
to make our feature importance analysis more sense.

The feature importance shown in Fig. 5 revealed the
ranking of the spatial feature of VCG and standard 12 lead
ECG criterion in classifying LVH. The Fig. 6-(a) confirms
the 1st ranked feature among VCG spatial features has a
great difference in its distribution. The result also showed
asymmetric results that seg r1 is about 1.5 times more
important than seg r2. The relative angle between QRS
complex and T wave loopwere ranked higher than all the
other features of relative angles. Although these angles are
well-known feature to detect LVH, the distribution of the
angle between seg r1 and seg t2 shown in Fig. 6-(b) are
less different than the feature of QRS complex.

V. CONCLUSION

This paper proposed the method to extract the spatial
feature of VCG by aplying MVEE to six segments of a
single-beat VCG which is composed of three asymmetrical
loops. Our proposed feature extraction was compared to 12
lead ECG in the LVH diagnosis task. Then, our method clar-
ified the ranking of diagnostic criteria for spatial features of
VCG. The result confirmed that the spatial features of QRS
complex are more dominant than other VCG spatial features
in classifying LVH. Our overall proposed methods can be
applied to different type of cardiac disease classification tasks
to quantify the clinical relevance between the spatial feature
of VCG and other cardiac disease type.
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