
  

 
 

Abstract—Several studies have demonstrated that error-related 

neuronal signatures can be successfully detected and used to 

improve the performance of brain-computer interfaces. 

However, this has been tested mainly in well-controlled 

environments and based on temporal features, such as the 

amplitude of event-related potentials. In this study, we propose 

a classification algorithm combining frequency features and a 

weighted SVM to detect the neuronal signatures of errors 

committed in a complex saccadic go/no-go task. We follow the 

hypothesis that frequency features yield better discrimination 

performance in complex tasks, generalize better, and require 

fewer pre-processing steps. When combining temporal and 

frequency features, we achieved a balanced classification 

accuracy of 75% - almost the same as using only frequency 

features. On the other hand, when using only temporal features, 

the balanced accuracy decreased to 66%. These findings show 

that subjects’ performance can be automatically detected based 

on frequency features of error-related neuronal signatures. 

Additionally, our results revealed that features computed in the 

pre-response time contribute to the discrimination between 

correct and erroneous responses, which suggests the existence of 

error-related patterns even before response execution. 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) are systems that 
translate neuronal activity patterns into commands for an 
interactive application, thus decoding user’s intentions from 
brain activity, which is typically measured using 
electroencephalography (EEG) [1, 2]. Therefore, BCIs enable 
computer control without any physical activity, allowing, e.g., 
motor-impaired users to control assistive tools [1, 3]. 

There are some difficulties in the classification for EEG-
based BCIs, namely the low signal-to-noise ratio (SNR), the 
limited amount of data, and data variability over time, between 
users and tasks. One solution to overcome these limitations is 
to use error-related potentials (ErrPs) to deduce which user’s 
intentions are incorrectly decoded by the BCI. This allows 
BCIs to learn online (requiring fewer offline training data) and 
to continuously update their parameters. When the output is 
not the one intended by the user, it elicits ErrPs that can be 
automatically detected. Hence, the label is estimated as the one 
predicted by the BCI if no ErrP is detected, and as the opposite 
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otherwise (for binary classification) [1]. Then, ErrPs can be 
decoded to revert the outcome of erroneous commands, 
derived from machine [4] or subject errors [5]. 

It is hence of extreme importance to properly classify 
errors in this context. It has been shown that the ErrPs can be 
recognized on a single-trial basis [5, 6]. However, there are 
still improvements to make, because ErrPs-based studies are 
usually performed in controlled laboratory conditions using 
simple tasks, which leads to high SNR and avoids typical 
confounds of realistic scenarios [2]. Moreover, the large 
majority of ErrP classification studies are based on temporal 
features [2, 6], which might not be ideal during complex tasks 
[7]. Therefore, it would be beneficial to find other types of 
features with error-related discriminative power. 

The extensive use of temporal features to classify ErrPs is 
related to the appearance of a negative deflection at 50-100 ms 
after the subject’s errors at mid-frontal electrodes, centered at 
FCz, named error-related negativity (ERN). A similar peak, 
the feedback-related negativity (FRN), arises 200-300 ms after 
the perception of an error [2], which may be committed by 
another subject or a machine [8]. Moreover, the ERN may be 
followed by an error-related positivity (Pe), a mid-parietal 
positive peak centered at the PZ electrode, which arises 200-
400 ms after the erroneous action [9]. Nevertheless, these are 
not the only correlates of error monitoring. There is large 
evidence that mid-frontal theta oscillations are associated with 
error monitoring, which is reflected by an increase in theta 
power during errors peaking on the FCZ electrode [2, 9, 10]. 
Moreover, parieto-occipital alpha activity has been related to 
errors caused by attentional lapses [9, 11] and the delta band 
has also been associated with error commission at central [10], 
mid-frontal and parietal channels [12]. 

Few studies have explored the use of frequency features to 
detect errors [10, 13], but have brought promising results. 
Omedes et al. [13] demonstrated that frequency features 
generalize better across tasks due to their lower sensitivity to 
latency shifts [2]. Furthermore, Spüler et al. [10] showed that 
frequency features yield much higher classification 
performance in an asynchronous context [14]. Also, frequency 
features require less pre-processing than temporal features [1], 
which is advantageous in the BCI context. 
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Here, we tested a set of frequency features and compare 
their discriminative power of erroneous vs. correct actions to 
the temporal features. These were used to build a classifier to 
detect errors committed by the user in a complex saccadic 
go/no-go task. We computed not only theta [13] but also delta 
and alpha power features. In addition to the features computed 
from EEG data in the post-response time [10, 13], we assessed 
the pre-response time. 

II. METHODS 

A. Data Acquisition 

Data from 20 healthy participants (nine female, mean age 
26.80 ± 4.51 y) were used in this study. All provided written 
consent in accordance with the Declaration of Helsinki, and 
the study followed the safety guidelines for research on 
humans. The work was approved by the Ethics Committee of 
the Faculty of Medicine of the University of Coimbra. 

The experiment was based on a go/no-go saccadic task 
with facial expression cues. During “go” trials, a happy 
averted face was the cue to look in the same direction of the 
face shown (pro-saccade), while a sad averted face informed 
the participants to look in the opposite direction of the face 
shown (anti-saccade). The “no-go” trials were signalized by a 
face (happy/sad) looking straight ahead. There were six 
distinct instructions (Fig. 1). The facial expression images of a 
white young-adult male were obtained from the Radboud 
Faces Database [15].  

The paradigm included six stages (Fig. 2). Firstly, a 
Neutral face (preparatory cue) was exhibited and followed by 
a Gap period. Then, the Instruction (randomly selected) was 
given and followed by the Fixation cross. In the Target phase, 
a square (distractor) appeared on either the right or left part of 
the screen, coherent with the gaze direction (when the face was 
looking forward, the target was randomly placed right or left). 
The last stage was destinated to the execution of the Response 
(saccade or no-go). However, many participants performed 
some saccades in other stages (mainly anticipatory reflexive 
saccades). The task comprised four runs of 84 trials each (28 
pro-saccade, 28 anti-saccade, and 28 no-go trials). Happy and 
sad, right and left trials were counterbalanced. The task was 
programmed in Presentation software (v. 12.0, 
Neurobehavioral Systems Inc.). 

EEG and electrooculogram (EOG) were recorded from 64 
channels (QuickCap, NeuroScan) with an extended 
international 10-20 system at 1000 Hz. The online reference 
was a channel close to Cz. EEG signals were amplified using 
a SynAmps 2 amplifier (Compumedics NeuroScan) and 
recorded using Curry Neuroimage 7.08 (NeuroScan). Eye 
tracking (ET) data were acquired simultaneously to record 
saccades at 120 Hz (iView XTM Hi-Speed, SMI). Data from 
one participant was excluded due to synchronization problems 
between EEG and ET data.  

B. EEG Data Pre-processing 

EEG data were down-sampled to 500 Hz, filtered (0.5 - 45 
Hz), and the noisy channels were removed. The electrodes 
were re-referenced to the average of all EEG (excluding EOG) 
channels. To minimize artifacts, Independent Component 
Analysis [16] was used. Afterwards, the previously removed 
noisy channels were interpolated (spherical interpolation). 

Figure 1. Facial instructions: A) happy no-go, B) left pro-saccade, C) right pro-
saccade, D) sad no-go, E) left anti-saccade, and F) right anti-saccade. 

The data were segmented into epochs of 1000 ms locked to the 
onset of the saccade and starting 500 ms before it (trials 
without saccades were not used). These were corrected for a 
baseline computed from the mean activity of the entire epoch. 

Trials were defined as correct (and used for classification 
with label = 0), if their first saccade was executed according to 
the given instruction during the stage Response (section II-A), 
to avoid error-related signals due to anticipation of responses. 
In opposition, trials were defined as errors (label = 1), if the 
first saccade was not according to the given instruction (e.g., 
pro-saccades instead of no-go), regardless of the response 
timing. Given that all correct but anticipated responses were 
removed and that trials without any saccade were not used, the 
number of observations were 1283 (1056 correct and 227 
erroneous instances). 

C. Feature Extraction 

To build the classification model, several features were 
computed per trial (table 1). Frequency band power (e.g., 
theta) “before” and “after” is the mean power spectral density 
(PSD) - computed using the Welch’s method - in that band at 
[-500, 0] ms and [0, 500] ms, respectively, where t = 0 is the 
response onset. Most of the features were computed for each 
individual channel, except for the features regarding the mean 
theta activity in the channel cluster around FCz. The number 
of initially extracted features was 1559, with 1307 frequency 
features - 587 of which from the theta band -, 250 temporal 
features, gender and age. EEG data were pre-processed, and 
features were computed using EEGLAB functions (v. 2) in a 
MATLAB script (v. R2018b). 

D.  Feature Selection 

Firstly, all features with a coefficient of variance lower than 
0.2 were removed. The remaining steps of feature selection 
were done using cross-validation [17] and, accordingly, 
different features were selected in each iteration. When the 
absolute value of the Pearson correlation between two features 
was higher than 0.9, one of them was nominated for 
elimination in that iteration (the one with the highest p-value 
obtained from t-tests between classes). After all iterations, the 
features designated for removal in less than half of the 
iterations were selected. Then, we selected the 40 most 
discriminative from the remaining ones - the p-values obtained 
from the t-tests between classes on each iteration were sorted 
and the features received from one (lowest p-value) to N 
(highest p-value) votes to be removed. In the end, the 40 
features with less votes were selected. 

E.  Classification 

The Monte-Carlo cross-validation was applied, in which the 
data were randomly partitioned in training (70%) and test 
(30%) sets in 100 iterations [18]. The features were 
standardized (z-score transformation) in each training set and 
the same transformation was then applied to the test set. The 
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classification was performed using a support vector machine 
(SVM) with a radial basis function (RBF) kernel. Given that 
our  data  were  imbalanced, we used a weighted SVM [10] 
that adjusts weights inversely proportional to class frequencies 
[19]. Feature selection and classification was performed in 
Python (v. 3.8) using Scikit-learn package. 

III.  RESULTS 

A. Selected Features 

The 40 most discriminative features are flagged in table 1 

with a number. Features 1-4 measure the theta activity of the 

cluster around FCZ, but the remaining selected features assess 

the activity of single channels. Feature 5 was selected for FC1, 

FCZ, FC2; feature 6 for FCZ, FC2; feature 7 for F3, FZ, FC1, 

FCZ, FC2, P4; feature 8 for FCZ; feature 9 for FC3, FC1, 

FCZ, FC2, CZ; feature 10 for FP1; feature 11 for C2, P6, PO4, 

PO6, PO8, O2; feature 12 for FC2, T8, CP5, P5; feature 13 

for CP4; feature 14 for C5, T8, CP5, TP8, P5; and feature 15 

for F8. 
We verified that 95% of the selected features were based on 

frequency metrics, 55% of which were theta-related, 24% were 
low frequency (average between delta, theta and alpha) 
features, 16% were alpha features and the remaining 5% were 
delta features. Moreover, 95% of the selected theta features 
were related to mid-frontal channels. On the other hand, 33% 
of the selected features were based on data prior to the 
response execution. The 10 most discriminative features 
(sorted) were feature 9 for FCZ, feature 3, feature 14 for T8, 
feature 4, feature 14 for P5, feature 9 for FC1, feature 14 for 
CP5, feature 11 for PO8, and feature 7 for FC1 and FCZ.  

Table 1. Features extracted. 
I “All freq.” represent the mean PSD at [1.5, 45] Hz for a certain channel/cluster of channels. II “High freq.” is the mean PSD at [35, 45] Hz. 

III “Other channels” is the cluster of all channels not included in the set of mid-frontal channels. 

Frequency features 

Theta features (4-8 Hz) 

Channel cluster around FCZ (Fz, FC1, FCz, FC2, Cz) 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼 𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧
 (1) 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧
(2) 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧
 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧
 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑜𝑡ℎ𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝐼𝐼𝐼
 (3) 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑜𝑡ℎ𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝐼𝐼𝐼
 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑎𝑟𝑜𝑢𝑛𝑑 𝐹𝐶𝑧
 (4) 

All channels 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼 𝑎𝑓𝑡𝑒𝑟𝐶ℎ
 (5) 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑎𝑓𝑡𝑒𝑟𝐶ℎ
(6) 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 (7) 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐷𝑒𝑙𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ
 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐴𝑙𝑝ℎ𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ
 (8) 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐷𝑒𝑙𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐴𝑙𝑝ℎ𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

Mid-frontal channels 

Single channels: Ch = {FP1, FPz, FP2, AF3, AF4, F5, F3, F1, Fz, F2, F4, F6, FC3, FC1, FCz, FC2, FC4, C1, Cz, C2} 

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝑇ℎ𝑒𝑡𝑎 𝑎𝑓𝑡𝑒𝑟𝑜𝑡ℎ𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝐼𝐼𝐼
 (9) 

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝑇ℎ𝑒𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒𝑜𝑡ℎ𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝐼𝐼𝐼
 

Delta (1.5-3.5 Hz), alpha (8.5-12 Hz) and low frequency (1.5-12 Hz) features (all channels) 

𝑃𝑜𝑤𝑒𝑟∗ 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼  𝑎𝑓𝑡𝑒𝑟𝐶ℎ
 

*Delta (10), alpha (11), 

low freq. (12) 

𝑃𝑜𝑤𝑒𝑟∗ 𝑎𝑓𝑡𝑒𝑟𝐶ℎ

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑎𝑓𝑡𝑒𝑟𝐶ℎ
 

*Delta, alpha, low freq. 

𝑃𝑜𝑤𝑒𝑟∗ 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐴𝑙𝑙 𝑓𝑟𝑒𝑞.𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

*Delta (13), alpha, 

low freq. (14) 

𝑃𝑜𝑤𝑒𝑟∗ 𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ

𝐻𝑖𝑔ℎ 𝑓𝑟𝑒𝑞.𝐼𝐼  𝑏𝑒𝑓𝑜𝑟𝑒𝐶ℎ
 

*Delta, alpha, low freq. 

Temporal features 

ERN features (around FCZ) 

Single channels: Ch = {Fz, FC1, FCz, FC2, Cz} 

Pe features (around PZ) 

Single channels: Ch = {CPz, P1, Pz, P2, POz} 

Mean potential at [70, 160] ms Mean potential at [200, 500] ms 

Other temporal features (all channels) 

Mean potential at 

[-500, -250] ms (15) 

Mean potential at 

[-250, 0] ms 

Mean potential at 

[0, 250] ms 

Mean potential at 

[250, 500] ms 

Demographic features 

Gender (16) Age 

 
Figure 2. Experimental design. 
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B. Performance Evaluation 

 The classification performance metrics are shown in table 

2. We tested four models using different features sets: all 

features, and with temporal, frequency, and theta features 

individually. All classifiers were tested with 40 features. 
 

Table 2. Classification performance using different sets of features. 

Features Sensitivity (%) Specificity (%) Bal. accuracy (%) 

Temporal  54.35 ± 5.15 78.45 ± 2.26 66.40 ± 2.73 

Theta  57.35 ± 7.01 81.52 ± 2.52 69.44 ± 3.24 

Frequency 59.46 ± 5.32 87.53 ± 2.38 73.49 ± 2.46 

All 62.59 ± 5.56 87.95 ± 2.15 75.27 ± 2.74 

IV. DISCUSSION 

With this study, we aimed to test whether frequency features 
add discriminative power to the automatic recognition of error-
related EEG patterns. We intended to compare the use of 
frequency and temporal features in complex tasks. We built 
SVM classifiers and achieved a balanced accuracy of 75% 
using temporal, frequency and demographic features, similar 
to the one obtained using only frequency features (73%). 
Using only theta features, the performance decreased to 69% 
and, only with temporal features, to 66%. Moreover, 95% of 
the most discriminative features were frequency-related (theta, 
alpha and delta). On the one hand, these results demonstrate 
that, in this context, the frequency features discriminate better 
between correct and erroneous responses than temporal 
features. On the other, we revealed that it is beneficial to 
explore not only theta, but also alpha and delta features. As 
expected, the great majority of selected theta features were 
computed from mid-frontal channels [9, 10]. Regarding the 
alpha band, features were selected mainly from parieto-
occipital channels, which is in line with the link between 
attentional errors and parieto-occipital alpha [9]. 

Although some previous studies report classification 
accuracies above 80% [4] or even 90% [20], a great part of 
literature describes accuracies between 70% and 80% [7, 10, 
13]. Moreover, most of these studies were tested in well-
controlled conditions with time-locked events. When trying to 
detect ErrPs asynchronously, Spüler et al. [10] reported only 
66% of accuracy, revealing the challenge of recognizing errors 
in continuous events. Our experiment was based on a go/no-
go saccadic task and, given that saccades are semi-automatic 
oculomotor responses to visual stimuli, there was a high 
variability of response timing. This context, with 
asynchronous saccades, is hence more realistic and 
challenging than the usual simple tasks [2]. The better 
performance derived from the use of frequency features found 
here supports the notion that oscillatory activity allows 
asynchronous recognition of erroneous actions [2, 10]. 

In addition to the usual features computed in the post-
response time, we assessed the pre-response time as well. 
Interestingly, one third of the selected features were computed 
from the pre-response time, which suggests the existence of 
error-related patterns prior to response execution, namely 
regarding theta and delta power. A future study comparing 
correct and erroneous trials regarding delta and theta power in 
the pre-action time is needed to confirm it. 

 Summing up, we have found that frequency features add 
discriminative power to the automatic detection of errors. Our 
results contribute to improve current classification algorithms; 
particularly the ones based on temporal features and that are 
only robust in synchronous contexts [2, 10]. The classification 
algorithm here proposed still needs to be tested for online 
applications. Nevertheless, the presented features might bring 
an important contribution to BCI systems optimization. 
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