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Abstract—The ability to generate predictive dynamic

simulations of human movement using optimal control

has been a growing point of interest in the design of

medical/assistive devices, e.g. robotic exoskeletons. Despite

this, many disseminated simulations of whole-body tasks, such

as balance recovery, neglect the role of the upper body instead

focusing on postural joints, e.g. ankle, knees, hips. Thus, the

purpose of the current study was to use a novel nonlinear model

predictive control (NMPC) approach to assess how actuated

upper limbs, as well as different individual performance

(optimality) criteria, can shape simulated reactive balance

recovery responses. A sagittal biomechanical model of a young

adult standing was designed and actuated via nonlinear muscle

torque generators (rotational single-muscle equivalents).

Forward dynamic simulations of balance recovery (NMPC-

driven) following an unexpected support-surface perturbation

were generated for each unique combination of selected

performance criteria (6 total), perturbation direction (forward

and backward), and arm joints free/locked. The observed

joint trajectories provide insight into the emergence of human

elements of postural control from individual optimality criteria,

e.g. hip-ankle strategies emerge from single-joint regulation.

Quantitative analysis of performance improvements with the

arms free suggest that whether arm responses emerge in the

simulations may be dependent on the problem’s initial guess.

Future work should focus on testing further performance

criteria and improving NMPC as a model of the nervous system.

I. INTRODUCTION

Recently, the U.S. Food and Drug Administration began

encouraging engineers and researchers in health/medicine

to implement computational modelling within the medical

device design process [1]. Coincidentally, simulations of

human musculoskeletal biomechanics have been gaining

ground over the previous decades as a tool for investigating

topics like injury risk and human motor control; this infor-

mation can then be integrated into assistive device hardware

and software, e.g. lower limb exoskeletons [6]. Typically,

biomechanical simulations fall into one of two categories:

inverse and forward dynamics. The latter is of noted interest

as it facilitates construction of what-if scenarios, which can

provide insight into device control robustness, human-device

interactions, etc., without putting the end-user at risk.

Due to its implications in falls and injuries, balance con-

trol/recovery has been oft-used as the simulated movement of

interest [4], [6], [7], [8], [11]. Most examples examine fixed-

support strategies (e.g. ankle, hip strategy) [3] wherein the

foot is considered a quasi-static body. To generate forward
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dynamic solutions, inputs to the biomechanical system must

be known. Optimal control is often used to form inputs

similar to the activations sent by the central nervous system

(CNS). Ideally, human motor control models should feature

concurrent feedforward and feedback elements [5]; however,

many balance models reliant on feedback elements are lim-

ited in complexity [4], [6], [7], use a simple control scheme

[11] or are driven by experimental tracking [12]. More

complex musculoskeletal models [8], [9], [10] tend to rely on

feedforward control, which inherently requires the perturba-

tion delivered to the system to be a part of the dynamic model

within the optimization. A good match between the dynamics

of the control-oriented and system models implies that the

responses to a truly novel perturbation cannot be captured;

rather it is likely that the responses generated mimic those

that occur after repeated exposure and habituation [8], [13].

Nonlinear model predictive control (NMPC) offers a novel

solution to this problem [5]; it generates the inputs using

constrained open-loop optimal control but operates with a

receding horizon that subsequently closes the loop.

A common feature of many biomechanical simulations,

not just balance, is the exclusion of arm motion, e.g. arms are

rigidly fixed to trunk [6], [7], [8], [9], [12]. Those simulations

that do include arms often have a particular component of

the motor task that requires arms, e.g. pointing [5]. For a task

like balance recovery, arm responses tend to be most overt

following exposure to a novel and/or unexpected perturbation

[13], and have quite a few hypothesized roles [14], [27].

Despite this, experimental protocols will often dictate that

these segments are not to be used [8]. In the context of

optimal control, this raises questions as to whether arm

responses arise to reduce cost of movement according to

some performance criteria. Answering this question would

be beneficial for those designing predictive dynamic biome-

chanical simulations rooted in optimal control. Therefore, the

current study used what-if simulations of balance recovery

to assess whether arm strategies arise from a typical set of

performance criteria following a novel balance perturbation.

How these responses alter the actions at postural joints was

also investigated. Key features of this approach included the

investigation of multiple perturbation directions (in sagittal

plane) and the use of NMPC as a model of the CNS.

II. MODEL, CONTROL, & SIMULATION

A. Human Biomechanical Model

The 5 degree-of-freedom (DOF) biomechanical model

of upright stance, see Fig. 1, was designed in MapleSim

(Maplesoft, Canada). Bilateral ankle, knee, hip, shoulder,
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Fig. 1. A) Schematic of the planar MTG-driven model; balance recovery
was evoked via unexpected accelerations of the support surface (P ). B)
Model of the base of support used to derive the toe/heel constraint forces
that dictate postural stability.

and elbow joints were assumed to behave symmetrically;

therefore, each pair was represented by a single revolute

joint (angles contained in q(t)). The base of support (BOS;
combined right/left foot) was rigidly fixed to a motion-driven

platform that could be displaced in the anteroposterior direc-

tion. This platform was used to deliver balance perturbations

to the model [2]. Inertial and geometric parameters for body

segments were adopted from the anthropometric tables in

[21], [25] (scaled to height = 1.80 m; mass = 75 kg).

Joints were actuated actively and passively using muscle

torque generators (MTGs) [15], [18], [19]. Rather than

adding biofidelity through redundant muscles, a rotational

single muscle-equivalent was implemented for each direction

of rotation (flexion, extension). Using torque-scaling func-

tions, MTGs can mimic muscle length/velocity dependencies

using the relevant joint angle and velocity. More explicitly,

the ith MTG torque that drives the jth joint was given by

τmtgi = ui(t) · τpos(qj) · τvel(q̇j) + τpsv(q, q̇j) (1)

where ui is the MTG’s isometric activation torque [15] and

τpos and τvel are scaling functions that depend only on local
joint kinematics (equations/parameters for postural MTGs

[19]; arm MTGs [17], [18]). Note that in the case of the

postural joints (ankle, knee, hip), passive mechanical torques

(τpsv) were a function of multiple joint kinematics; an elastic
model that considers biarticular muscles was used [16]. The

arm τpsv(qj , q̇j) passive torque and its relevant parameters

were adopted from [17]. Joint damping was added to τpsv
through a linear rotational damper [20].

B. Nonlinear Model Predictive Control

NMPC was used to generate forward dynamic simulations

of humanoid balance recovery. Briefly, NMPC involves

solving a nonlinear optimal control problem for a control-

oriented model over a future finite horizon [t0, tf ]. The first

controller action is then enacted on the system; the process is

subsequently repeated at user-defined time steps ad infinitum.

The finite-horizon optimal control problem takes the form

arg min
x(t),u(t)

J(x(t),u(t)) =

∫ tf

t0

L(x(t),u(t))dt (2)

subject to: ẋ(t) = f(x(t),u(t)) (3)

H(x(t),u(t); x(t0),u(t0)) < 0 (4)

where x(t) = {q(t), q̇(t)}T , u(t) ∈ R10 is a vector

containing the time-varying isometric activation torques for

each MTG (Fig. 1), and f is the human musculoskeletal

control-oriented dynamics that exclude any accelerations of

the BOS. All linear/nonlinear inequality and box constraints

were contained within the vector H. The function L is

typically referred to as the Lagrangian term. As the goal

in the current study was to assess how individual criteria

influence the observed balance recovery strategies, multi-

objective costs were ignored. Rather, the balance responses

generated by different Lagrangians were compared. This

decision circumvented additional issues like manually tuning

weights between performance criteria [8].

The optimal control problem given by (2), (3), (4) was

formulated as a nonlinear programming problem (NLP) via

direct collocation, i.e. parameterization of state and control

trajectories. Trapezoidal collocation was used to ensure (3)

could be met with fewer computations. Thus, the control

signal sent from the NMPC to the plant was a linear inter-

polation between the first two controller actions (separated

by a step duration) returned by the optimization routine.

C. Cost Function: Lagrangians

1) Joint/State-Space Criteria: The first criteria related

to deviations in joint-space was inspired by an optimized

pose controller that could respond to multi-directional per-

turbations [11]. The corresponding Lagrangian minimizes

deviations from some reference pose q̄ = {θ̄a, θ̄k, θ̄h, θ̄sθ̄e}T :

∆Pose: L(·) = (q(t)− q̄)T (q(t)− q̄) (5)

Rather than weigh all elements of q evenly, individual joints

can also be of focus. For example, motion of the knee joint,

often imposed as a constraint in models of humanoid stance

[7], can be incorporated within the cost functional:

∆Knee: L(·) = (θk − θ̄k)
2 (6)

Many simulation studies also have made use of segmental

trunk pitch relative to an absolute reference angle θ̄t [7], [8]:

∆Trunk: L(·) = (θa + θk + θh − θ̄t)
2 (7)

This term assumes head, and subsequently eye position, is

regulated by the CNS.

2) Center of Mass Criteria: Criteria related to the control

of balance in the whole-body center of mass (COM) space

included minimizing horizontal excursions of the COM,

∆COM: L(·) = (rCM(q(t)) · î− r̄)2 (8)

where rCM is the COM position. The reference point r̄, is the
COM position evaluated at q̄. This term can also be expanded
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to regulate deviations of rxCM which is the COM position

extrapolated in the direction of its normalized velocity [23],

rxCM = {rCM(q(t)) +

√
`p
g
ṙCM(x(t))} · î (9)

∆XCOM: L(·) = (rxCM − r̄)
2

(10)

where g is gravitational acceleration and `p is the theoretical
pendulum length for human stance [23]. This term adds a

dynamic velocity-component to the performance criteria.

3) Energy/Effort-Based Criteria: Consistent with the hu-

man balance recovery literature [7], [8], effort was also

considered in the list of performance criteria. In the current

study, effort was quantified using squared activation torques,

ACT: L(·) = u(t)Tu(t) (11)

Often, these terms promote reasonable movements within

dynamic simulations of human motion [22].

D. Domain of Feasibility for Balanced Posture

The domain of feasibility within the NMPC, enforced

through Eq. (4), was considered to be the set of all stable

motions. For the biped system herein, i.e. foot rigid body is

flat against the ground, a state was considered stable so long

as the following conditions were met [24]: −Fw · ĵ
µ(x(t),u(t))− `c2t
−`c2h − µ(x(t),u(t))

 < 0 (12)

where Fw is the contact force between foot and ground, µ
is the location of the zero-moment point (ZMP; coincident

with the centre of pressure while in the BOS) with respect to

the foot COM [24], and `c2h,`c2t are the horizontal distance
between the foot COM and toe/heel respectively, i.e. the

ZMP must remain within BOS boundaries.

For the sake of computational efficiency, the dimension of

Eq. (12) was reduced by assuming the foot was hinged to

the support surface at two anatomical locations (toes/head of

metatarsals and the heel/calcaneus). This approach is similar

to previous biomechanical simulations in which heel-raise

was permitted using a torsional spring [10]. From the ZMP

equations, the following linear system was reached, which

assumes that the BOS and inertial frame are parallel:[
`c2t −`c2h
1 1

]{
λt
λh

}
=

{∑n
i=1 τ

mtg

i − `fh
2 Fw · î

Fw · ĵ

}
(13)

The normal contact forces acting at the toe (λt) and heel

(λh), were then used in (4): H1 = −λt and H2 = −λh. One
of these forces becoming negative would indicate rotation of

the foot about the opposing marker; both would indicate that

the model has become fully airborne.

For an infinite horizon, Eq. (12) alone would be sufficient

in guaranteeing stability in the NMPC. However, for receding

horizon control, this is often not the case. To improve

stability without expanding the number of terms in (2), a

relaxed terminal constraint was added to H. The horizontal

XCOM and vertical COM positions at tf were constrained

to remain within the confines of a small ellipse centered at

the reference pose COM position (r̄, h̄):

H3 =
(rxCM(x(tf ))− r̄)2

s2x
+
(rCM(q(tf )) · ĵ− h̄)2

s2y
−1 (14)

Here, sx and sy are the horizontal and vertical semiaxes.

Constraining COM height encourages a return towards up-

right posture, whereas doing the same for the XCOM can

leave the humanoid in a posture that is theoretically recover-

able (assuming the body behaves like an inverted pendulum

[23]). Similar criteria have appeared as Mayer terms in

previous dynamic simulations of balance recovery [8], [10].

E. Simulation Experiments

A series of simulation experiments were conducted to

mimic an existing and well-known experimental protocol [2],

in which healthy young adults were subjected to support-

surface translations in four directions. Perturbations were

based on a piecewise acceleration function consisting of

a propulsive and braking impulse; the function parameters

were tuned according to the differences in recovery diffi-

culty between directions, i.e. the probability of inducing a

change in support. In the current study, “small” forward

and backward perturbations were selected [2], which in

experiments triggers balance recovery with a low likelihood

of stepping. Simulations, spanning a two-second window

[8], were then run for each combination of Lagrangian (see

II-C), perturbation direction (backward and forward), and

upper limb condition (arms locked, AL; arms free, AF).

Accelerations of the support surface were initiated 150 ms

after the beginning of each simulation.

The optimal control problem embedded within the

NMPC controller was scaled and solved using an interior-

point method in fmincon (MATLAB 2020a, MathWorks,

USA). Symbolic gradients and Hessians were generated in

MapleSim, exported into optimized MATLAB/C++ func-

tions, and supplied to the solver to improve controller effi-

cacy. Controller step size and horizon length were set to 25

ms and 800 ms respectively; additional parameters included

q̄ = {−4.6, 2.9,−2.9, 0, 0}T deg and sx = sy = 2.5 cm.

Parameter values were based on the limited literature in

modelling human motor control via MPC [4], [5].

Given our interest in the functionality of simulated arm

responses, a quantitative measure was introduced to assess

whether unlocking the arm joints would improve the per-

formance under each criteria. This measure, the logarithmic

cost ratio (CR), was evaluated as, CR = log10 (JAF/JAL)
which effectively indicated whether the arms reduced the

given cost of recovery (CR<0) while also accounting for the

varying orders of magnitude between evaluated functionals.

III. RESULTSAND DISCUSSION

The postural strategies generated using each performance

criteria are shown in Fig. 2. Some notable features within

the results of the AL condition include the following: When

using∆Pose, NMPC relied on a general stiffening strategy to

minimize all joint deviations for both perturbation directions.
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Fig. 2. Simulated postural responses following backward (left, initial fall forward) and forward (right, initial fall backward) support-surface perturbations
with the arm joints locked (dotted figure) or free (solid figure). Responses were generated using the six optimality criteria shown. Peturbation initiation is
marked by * on the time axis.

The ∆Knee criteria forced the biomechanical model to adopt

a classic double pendulum (combined hip-ankle) strategy [3],

[7]. Using ∆COM and ∆XCOM produced near-identical

multi-joint COM lowering strategies with some minor per-

turbation direction-dependencies, e.g. patterns of ankle and

hip sway. Unsurprisingly, the ACT criteria prompted the

model to relax the most during the recovery, especially

for the backward condition. Versteeg et al. [8] reported

that increasing the relative weights on muscle stress criteria

in dynamic musculoskeletal simulations prompted a shift

towards a hip strategy following backward perturbations.

In the current study, without additional regulatory criteria

[8], the NMPC became reliant on passive MTG terms and

moved the model through awkward poses rather than using

a defined hip strategy. Formulations using net joint torques

may produce more reasonable behaviours as factors like

parallel elastic tension and injury limits are considered.

Following a forward perturbation, both ACT and ∆Trunk

criteria produced peak backward XCOM excursions rela-

tive to the heel (-5.0 to -1.7 cm) that were similar to

experimental values using the same perturbation (-4.8 cm

[28]). Conversely, XCOM excursions following backward

perturbations were consistently underestimated using NMPC,

though variables like peak forward trunk pitch did match

those in the literature (e.g. -50 to -40◦ [8]) despite differences

in perturbation size. These predictions were best when using

∆COM or ∆XCOM; ∆Knee provided a markedly close

TABLE I

EVALUATED LOGARITHMIC COST RATIOS (CR)

Joint-Space COM-Space Effort

Dir. ∆Pose ∆Knee ∆Trunk ∆COM ∆XCOM ACT

B 2.13 -2.61 -2.54 -1.14 -0.82 -0.05

F 2.38 -0.61 0.99 0.46 0.04 0.05

match also (-38.2◦ with AL). It is likely that using a weighted

combination of multiple criteria (e.g. ACT+∆COM) would

correct these reported prediction errors [7], [8], [22].

Unlocking the arm joints had a handful of interesting

effects on the simulated postural kinematics (Fig. 2). Most

notably, the ∆Pose-predicted balance strategy shifted from

stiffening to using pronounced flexion of the knee and

hip (occurred for both perturbation directions). Additionally,

having the arms locked appeared to make it easier for the

NMPC to minimize knee or trunk deviations, as reflected by

the CRs in Table I. Most of the observed effects took place

in the backward perturbation condition (Table I). For exam-

ple, unlocking the arms while using ∆COM and ∆XCOM

modified the predicted ankle/hip trajectories in said condition

only; no obvious changes exist for the forward condition. In

general, unlocking the arms had less of an impact on the

forward perturbation responses than anticipated [13], [26].

4720



The compensatory arm responses generated for each com-

bination of Lagrangian and perturbation direction are also

summarized in Fig. 2. Extremely similar patterns were

observed for ∆Knee, ∆Trunk, ∆COM, ∆XCOM: a slow

drift towards flexion in shoulder and elbow following each

perturbation. This lack of sizable arm motion could be due

to numerous factors, e.g. less arm movement is optimal,

local NLP methods and restrictive initial guess not capturing

global optimum, too small a perturbation, and the need for

a 3D model to capture phenomena [13], [26]. Unfortunately,

cases like ∆Knee, where the CR<0 but there is no unique

arm response, make it difficult to assess whether CR im-

provements were purely coincidental. The exaggerated arm

responses observed when using the ACT criteria is consistent

with the corresponding lower-limb responses; an oscillatory

behaviour is particularly noticeable in the shoulder. Inter-

estingly, ∆Pose had unique arm motions paired with the

corresponding flexed postural strategy, particularly following

forward perturbations. The shoulders were slowly flexed

forward and the elbow was maintained nearly straight, i.e.

counterbalancing. However, the CR for ∆Pose was positive,

which suggests that the different control strategy emerged

as a byproduct of the relative location of the initial guess

within the AF and AL search spaces.

IV. CONCLUSION

In summary, few cost functions within the NMPC scheme,

e.g. ∆Pose and ACT, generated substantial compensatory

arm movements in a planar biomechanical model of human

balance recovery. There are various assumptions, limitations

and potential future directions for the current study. Neural

delays, notably during 80-100 ms following the perturbation

[3], [8], weren’t considered to keep the current NMPC

iteration simple; future iterations will add delays to improve

fidelity. Friction was not considered within the domain of

feasibility for balanced posture; though during simulations,

the tangential ground reaction force never exceeded a rea-

sonable dry friction threshold (coefficient = 0.20, [25]). It

was assumed within the NMPC that the CNS formulates

the control problem primarily through Lagrangian terms. The

addition of Mayer terms to the embedded problem, as well as

any Lagrangian criteria not examined herein, would require

further research. Additionally, given the infrequent use of

MPC in biomechanical predictive simulations, further system

identification may be beneficial in providing direction to

biomechanics researchers during MPC design [5], [4]. It is

possible that this process would naturally require establish-

ment of the proper optimal control problem formulation.
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