
  

  

Abstract— Cardiomyopathies diseases affects a great number 

of the elderly population. An adequate identification of the 

etiology of a cardiomyopathy patient is still a challenge. The aim 

of this study was to classify patients by their etiology in function 

of indexes extracted from the characterization of the pulse 

transit time (PTT). This time series represents the time taken by 

the pulse pressure to propagate through the length of the arterial 

tree and corresponding to the time between R peak of ECG and 

the mid-point of the diastolic to systolic slope in the blood 

pressure signal. For each patient, the PTT time series was 

extracted. Thirty cardiomyopathy patients (CMP) classified as 

ischemic (ICM – 15 patients) and dilated (DCM – 15 patients) 

were analyzed. Forty-three healthy subjects (CON) were used as 

a reference. The PTT time series was characterized through 

statistical descriptive indices and the joint symbolic dynamics 

method. The best indices were used to build support vector 

machine models. The optimal model to classify ICM versus 

DCM patients achieved 89.6% accuracy, 78.5% sensitivity, and 

100% specificity. When comparing CMP patients and CON 

subjects, the best model achieved 91.3% accuracy, 91.3% 

sensitivity, and 88.3% specificity. Our results suggests a 

significantly lower pulse transit time in ischemic patients. 

 
Clinical relevance— This study analyzed the suitability of the 

pulse transit time for the classification of ICM and DCM 

patients. 

 

I. INTRODUCTION 

Diseases like cardiomyopathies affect a large part of the 
elderly population. Clinically differentiation between several 
types of them are still challenging. For instance, the ischemic 
cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) 
patients present similar symptoms, despite the differences in 
their etiology. The analysis of systems related to their 
pathological behaviour could help to differentiate between 
these cardiomyopathies and contribute to improve earlier 
diagnosis of these patients [1, 2]. 

Several linear and non-linear techniques based on the 
analysis of biomedical signals have been applied to study 
differences between cardiomyopathies patients [3-5]. Some 
differences between ICM and DCM patients have been 
presented in function of their biochemical processes [6, 7]. 
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Another study  showed an abnormal regulation of contractility 
in in dilated hearts, analyzing their mechanical behaviour  [8].  

One way to study the behaviour of cardiomyopathies 
through ECG, blood pressure and respiratory flow signals is 
by analyzing the interactions between their physiological 
systems. In our previous work, we explored the interactions 
between the cardiac and respiratory systems in function of the 
changes in blood pressure and found respiratory patterns that 
were characteristic of dilated cardiomyopathy patients [9].  

In this work, we propose the analysis of the same patients 
considering the relation between each heartbeat and each 
blood pressure pulse, through the pulse transit time (PTT). 
This time series represent the length of time it takes for the 
pulse pressure to propagate through the length of the arterial 
tree. This index allows to study the relations between electrical 
activity of the heart and the pump capacity of cardiac muscle 
through the electrocardiographic and blood pressure signals, 
respectively. The main objective of this study is to analyze the 
suitability of the PTT to classify patients by their etiology. We 
propose to characterize these time series using statistical 
parameters and the joint symbolic dynamics method. 

 

II. DATABASE 

The non-invasive electrocardiographic (ECG) and blood 
pressure (BP) recordings from 30 cardiomyopathy patients 
were registered at the Santa Creu I Sant Pau Hospital, 
Barcelona, Spain. Every recording was performed according 
to a protocol, approved by the Hospital ethics committee. The 
patients were characterized by the New York Heart 
Association function (NYHA) ≥ 2 and were diagnosed by 
either ischemic cardiomyopathy (ICM – 15 patients) or dilated 
cardiomyopathy (DCM – 15 patients). Forty-three healthy 
subjects were used as a reference (CON).  Table I summarizes 
the clinical information of these patients.  

The recordings were acquired with the Portapres-system 
and the Porti 16-biosignal amplifier, for 15 minutes, at a 
sample frequency of 1600 Hz, with the patient in supine 
position [9].  
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TABLE I.  CLINICAL INDICES 

 ICM DCM 

Patients 15 15 

Age [years] 65.4 ± 11.9 61.7 ±12.9 

Weight [kg] 81.4 ± 13.3 81.3 ± 17.9  

BMI [kg/m2] 28.1 ± 3.4 28.7 ± 6.6 

NYHA 2.1 ± 0.3 2.1 ± 0.7  

LVDD [mm] 63.7 ± 8.6 67.8 ± 4.2 

AD [mm] 47.3 ± 8.3 44.7 ± 4.1 

ProBNP 1327.1 ± 1458.6 1131.2 ± 1835.6 

LVEF [%] 33.0 ± 6.9 37.5 ± 6.2 

BMI = Body Mass Index; NYHA = New York Heart Association functional 

classification; LVDD = Left Ventricular Diastolic Dimension; AD = Auricular 

Diameter; ProBNP = Brain Natriuretic Peptide; LVEF = Left Ventricular Ejection 

Fraction.  

 

The ECG and BP signals linear trend were removed, and 
in-house preprocessing tools were used to reduce noise, 
artifacts, and spikes. All outliers were eliminated.  

 

III. METHODOLOGY 
 

A.  Signal Processing 

The time series of the pulse transit time (PTT, [ms]) was 
extracted from the ECG and BP signals using an in-house 
algorithm considering the time elapsed between the R peaks 
and the mid-point of the rise of the corresponding blood 
pressure pulse for each heartbeat. Thereafter, the series were 
inspected and edited, if necessary. Fig 1. Shows an example of 
the pulse transit time. 

 

PTT
R
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Figure 1.  Example of the pulse transit time. 

 

B. Statistical characterization 

 The PTT time series was characterized through statistical 
descriptive indices that includes the mean (𝑃𝑇𝑇𝑚), standard 
deviation (𝑃𝑇𝑇𝑠𝑑), kurtosis (𝑃𝑇𝑇𝐾), skewness (𝑃𝑇𝑇𝑆𝑘), 
interquartile range (𝑃𝑇𝑇𝐼𝑄𝑅), and coefficient of variation 

(𝑃𝑇𝑇𝐶𝑉). 

C.  Joint symbolic dynamics 

 The joint symbolic dynamics (JSD) characterization method 
is useful to quantify the non-linear behavior of a time series by 
the means of symbols [10]. We transformed the PTT series 
using a symbolic alphabet {0, 1}, according to: 
 

                         𝑆𝑛
𝑃𝑇𝑇 {

0: (𝑃𝑇𝑇𝑛+1 − 𝑃𝑇𝑇𝑛) ≤ 0

1: (𝑃𝑇𝑇𝑛+1 − 𝑃𝑇𝑇𝑛) > 0 
                (1) 

 

 We defined a word as a sequence of three consecutive and 
non-overlapping symbols. A vector 𝑊𝑛

𝑃𝑇𝑇was constructed 
containing all word iterations from [000] to [111]. Finally, the 
probability of occurrence of each word was assessed and 
analyzed considering 𝑝𝑃𝑇𝑇𝑤. Table II shows a summary of the 
indices considered. 

 

TABLE II.  INDEX DESCRIPTION: STAITSTICAL AND PROBABILITY OF 

OCURRENCE OF WORDS 

Statistical  Description 

𝑃𝑇𝑇𝑚 𝑃𝑇𝑇 mean value 

𝑷𝑻𝑻𝒔𝒅 𝑷𝑻𝑻 standard deviation 

𝑷𝑻𝑻𝑲 𝑷𝑻𝑻 kurtosis 

𝑃𝑇𝑇𝑆𝑘 𝑃𝑇𝑇 skewness 

𝑃𝑇𝑇𝐶𝑉 𝑃𝑇𝑇 coefficient of variation 

𝑷𝑻𝑻𝑰𝑸𝑹 𝑷𝑻𝑻 interquartile range 

JSD  Description 

𝑝𝑃𝑇𝑇
000

 word 000 

𝑝𝑃𝑇𝑇001 word 001 

𝑝𝑃𝑇𝑇010 word 010 

𝑝𝑃𝑇𝑇011 word 011 

𝑝𝑃𝑇𝑇100 word 100 

𝑝𝑃𝑇𝑇101 word 101 

𝑝𝑃𝑇𝑇110 word 110 

𝑝𝑃𝑇𝑇111 word 111 

 

D. Classification 

The support vector machines (SVM) method is useful for 

classification tasks where the classes are not linearly 

separable in the original space. By transforming the data into 

a higher dimensional space, SVM aims to solve a simple 

linear problem instead of the originally complex non-linear 

one. This process is achieved through the optimization of a 

hyperplane defined by the SVM function, being 

 𝑋 = {𝑥1, … , 𝑥𝐿 ∈ ℝ} for a given set of data vectors and 

 𝑌 = {𝑦1, … , 𝑦𝐿} their corresponding labels. 
 

𝑓(𝑥) = 𝑤𝑧 + 𝑏 = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖𝑦𝑖) + 𝑏.          (2)
𝐿

𝑖
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  The 𝐾(𝑥𝑖𝑦𝑖) term is known as the Kernel function that 

shapes the hyperplane and 𝛼𝑖 and 𝑏 define the efficiency of 

the classifier on optimal conditions [11]. From all the possible 

Kernel types we evaluated the Gaussian, Laplace and 

ANOVA. 
 

The Gaussian Kernel is often used to model radially 

distributed data,  

                       𝐾(𝑥, 𝑦) = 𝑒
−(

‖𝑥−𝑦‖2

2𝜎2 )
                      (3) 

 

were 𝜎 is a penalization term. 

 

  The Laplace kernel is a less 𝜎 influenced version of the 

Gaussian kernel, 

                 𝐾(𝑥, 𝑦) = 𝑒
−(

‖𝑥−𝑦‖2

2𝜎
)
.                        (4) 

 

    The ANOVA kernel is used on multidimensional support 

vector regression models,  
 

𝐾(𝑥, 𝑦) = ∑ 𝑒(−𝜎(𝑥𝑘−𝑦𝑘)
2

)
𝑑

                
𝑛

𝑘=1
(5) 

 

being 𝜎 and 𝑑 the optimization indices. 

  

   The classification problem is then solved by maximizing 

the margin while minimizing the training error. Using the 

Lagrange multipliers method, a dual formulation is obtained, 

 

 𝑚𝑖𝑛𝑃(𝑤, 𝑏) =
1

2
‖𝑤𝑚𝑧‖2 + 𝐶 ∑ 𝐾1[𝑦𝑖𝑓(𝑥𝑖)]

𝑖
    (6) 

    
were 𝐶 is a penalty parameter. Despite 𝐶 having no direct 

meaning, when its value increases, the penalty assigned to 

errors is stronger, narrowing the decision boundary. 

 

  Each feature was scaled and normalized (zero mean and 

unit variance) in order to avoid scaling biases. For each 

iteration of features, the model was built by optimizing the 

value of 𝐶 for each of the kernels considered, by iterating 

different values of σ and d.  

 

The indices that showed statistical differences and low 

correlation were used in pairs to build several SVM models. 

The specificity and the accuracy of each model was calculated 

and the one with the higher value (specificity then accuracy) 

was chosen as optimal for each type of kernel. 

 

A. Statistical Analysis 

 

  A Kolmogorov-Smirnov non-parametric statistical test 

was applied to evaluate the statistical significance of the 

indices, with p-value ≤ 0.05. In addition, a correlation analysis 

was performed on those indices that presented statistically 

significant differences. For highly correlated indices (ρ ≥ 0.7), 

the one with the lowest statistical significance was discarded. 

The leave-one-out cross-validation was used to validate the 

results, who are presented in terms of accuracy (Acc), 

sensitivity (Sn), and specificity (Sp).  

IV. RESULTS 

 

A total of 14 indices were obtained during the 
characterization step. The results were studied considering two 
different comparisons: 

− Ischemic vs dilated cardiomyopathy patients (ICM 
vs DCM) 

− Cardiomyopathy patients vs Control (CMP vs CON) 

 

When ICM and DCM patients were compared 4 indices 
shown statistically significant differences. One of them was 
correlated with another index with higher statistical power and 
was discarded. The remaining 3 indices were used for the 
classification task.  

In the analysis of CMP patients and CON subjects 9 indices 
presented statistically significant differences. From these 
indices 2 presented high correlation with indices with higher 
statistical power and were discarded. The remaining 7 indices 
were used to build the classification models.  Table III shows 
the most relevant indices for each comparison, expressed as 
mean value and standard deviation (SD). 

 

TABLE III.  SIGNIFICANT INDICES SUMMARY (MEAN ± SD): COMPARING 

ICM VERSUS DCM PATIENTS AND CMP PATIENTS VERSUS CON SUBJECTS 

ICM vs DCM 

Index ICM (15) DCM (15) p-value 

𝑷𝑻𝑻𝒎 1.2 ± 0.7 4.1 ± 4.0 0.04 

𝑷𝑻𝑻𝒔𝒅 0.5 ± 0.3 2.2 ± 2.1 0.03 

𝑃𝑇𝑇𝐼𝑄𝑅 0.6 ± 0.5 3.9  ± 4.8 0.002 

𝑃𝑇𝑇𝐾 2.8 ± 4.3 –1.1 ± 0.4 <0.001 

CMP vs CON 

Index CMP (30) CON (43) p-value 

𝑃𝑇𝑇𝑚 2.9 ± 3.2 7.4 ± 6.4 <0.001 

𝑃𝑇𝑇𝑠𝑑 1.6 ± 1.4 4.6 ± 4.5 <0.001 

𝑃𝑇𝑇𝐼𝑄𝑅 2.5 ± 3.6 7.9 ± 7.7 <0.001 

𝑃𝑇𝑇𝐾 0.24 ± 2.9 –0.9 ± 0.5 0.04 

𝑝𝑃𝑇𝑇
001

 0.1 ± 0.07 0.09 ± 0.05 0.009 

𝑝𝑃𝑇𝑇
010

 0.13 ± 0.09 0.03 ± 0.03 <0.001 

𝑝𝑃𝑇𝑇
100

 0.13 ± 0.05 0.08 ± 0.04 0.007 

𝑝𝑃𝑇𝑇
101

 0.1 ± 0.08 0.05 ± 0.04 0.01 

𝑝𝑃𝑇𝑇
111

 0.08 ± 0.06 0.41 ± 0.21 <0.001 

 

The 𝑃𝑇𝑇𝐾 and 𝑃𝑇𝑇𝐼𝑄𝑅 were the optimal indices to make 

the ICM vs DCM model with Laplace kernel, achieving 89.6% 
accuracy, 78.5% sensitivity and 100% specificity. The CMP 
vs CON comparison model was built with the ANOVA kernel 
and the 𝑃𝑇𝑇𝑠𝑑 and 𝑝𝑃𝑇𝑇111, obtaining 91.3% accuracy, 94% 
sensitivity and 88.3% specificity. Table VI presents the 
classification results, and Fig 2. the SVM scoreplots results.  
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TABLE IV.  CLASSIFICATION RESULTS 

Groups C σ d Acc(%) Sn(%) Sp(%) 

ICM vs DCM 1.2 0.7 - 89.6 78.5 100 

CMP vs CON 2.5 0.2 1.2 91.3 91.3 88.3 

C: Penalty parameter of SVM; σ and d: Penalization term of kernels; 

Acc: Accuracy; Sn; Sensitivity; Sp: Specificity 

 

 

 
 

Figure 2.  Support vector machine classification results. a) ICM (   ) 

vs DCM (   ), b) CMP (   ) vs CON (   ). 
 

V. DISCUSSION AND CONCLUSION 

 

The suitability of the analysis of the pulse transit time for 

the characterization and classification of cardiomyopathy 

patients was explored. The relevant indices extracted were 

used to classify the patients and control subjects.  
 

Our results suggest that ICM patients showed lower PTT 

values than DCM patients and CON subjects, and with less 

dispersion. Previous studies also presented lower levels of 

PTT values in pathological conditions [12, 13]. On the other 

hand, ICM patients showed higher kurtosis values than DCM 

patients, suggesting a less stable behaviour than the one 

observed in DCM patients.   
 

 In comparison with the CON subjects, the patients showed 

lower PTT values on average, and with a more stable 

behaviour. We also observed that the increasing behavior 

(𝑝PTT111) is less prevalent in pathological conditions. We 

hypothesize that these PTT increasing patterns, in CMP 

patients, is instead performed by smooth increasing patterns 

(𝑝PTT001) with some alternant patterns (𝑝PTT010, 𝑝PTT101), 

since these patterns are more prevalent in CMP patients in 

comparison with control group. 

In conclusion, the analysis of the pulse transit time 

provided novel insight in the classification of cardiomyopathy 

patients. These results are promising in the characterization of 

cardiomyopathy patients by their etiology, especially 

ischemic cardiomyopathy patients. However, these results 

should be validated with a greater number of patients.  
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