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Abstract— Respiratory illnesses are common in the United
States and globally; people deal with these illnesses in various
forms, such as asthma, chronic obstructive pulmonary diseases,
or infectious respiratory diseases (e.g., coronavirus). The lung
function of subjects affected by these illnesses degrades due
to infection or inflammation in their respiratory airways.
Typically, lung function is assessed using in-clinic medical
equipment, and quite recently, via portable spirometry devices.
Research has shown that the obstruction and restriction in
the respiratory airways affect individuals’ voice characteristics.
Hence, audio features could play a role in predicting the lung
function and severity of the obstruction. In this paper, we go be-
yond well-known voice audio features and create a hybrid deep
learning model using CNN-LSTM to discover spatiotemporal
patterns in speech and predict the lung function parameters
with accuracy comparable to conventional devices. We validate
the performance and generalizability of our method using
the data collected from 201 subjects enrolled in two studies
internally and in collaboration with a pulmonary hospital.
SpeechSpiro measures lung function parameters (e.g., forced
vital capacity) with a mean normalized RMSE of 12% and R2

score of up to 76% using 60-second phone audio recordings of
individuals reading a passage.

Clinical relevance — Speech-based spirometry has the poten-
tial to eliminate the need for an additional device to carry out
the lung function assessment outside clinical settings; hence, it
can enable continuous and mobile track of the individual’s con-
dition, healthy or with a respiratory illness, using a smartphone.

I. INTRODUCTION

Respiratory illnesses or disorders are common in the
United States and worldwide, and they come in various
forms. Statistics show that 65 million people have moderate
to severe chronic obstructive pulmonary disease (COPD)
where about 3 million die each year, making COPD the third
leading cause of death worldwide [1]. About 334 million
people deal with asthma, which is the most common chronic
disease in childhood, affecting 14% of children globally [2].
Respiratory tract infections caused by influenza kill between
250,000 and 500,000 people annually. By May 2021, more
than a year after the spread of a new strain of coronavirus in
2019, 150 million people were affected by COVID-19 and
caused the death of more than 3 million people globally [3].
The United States alone spends billions of dollars on de-
tection, treatment, and management of pulmonary diseases
in direct and in-direct healthcare costs [4], [5]. Remote and
mobile respiratory health monitoring can potentially provide
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a patient-centered solution with a high level of care and
reduce healthcare costs, mainly decreasing the duration and
frequency of subsequent hospitalizations [6], [7].

Fig. 1. Transition of the lung function assessment from in-clinic settings
to portable devices, mobile spirometry, and towards using natural speech.

Respiratory condition varies day-to-day depending on
daily activities, air quality, and environmental factors. Regu-
lar assessments are the key to the management of respiratory
illness and controlling the spread of infection. Chronic pa-
tients may need to take medications daily, and continuous
monitoring of relevant symptoms can help clinicians estab-
lish if these medications are sufficiently effective [8], [9].

Lung function parameters such as forced vital capacity
(FVC) or forced expiratory volume in one second (FEV1) are
clinical indices analyzed for respiratory assessment. Changes
in these parameters over a couple of days beyond day-to-
day variations are an indication of acute exacerbation and
worsening condition in the subjects dealing with asthma,
COPD, or acute respiratory infections [10]. The decline in
lung function would result in a diminished quality of life
and cause trouble for subjects with their daily life activities.
These individuals may require immediate medical attention
and change in their medication to treat the symptoms and
avoid worsening conditions. Otherwise, delayed diagnosis
and treatment could result in a notable drop in blood oxygen
level and even death. Researchers have illustrated that several
biomarkers in voice correlate with the respiratory conditions
and lung function parameters [8], [11], [12].

Spirometry, as a type of pulmonary function test (PFT)
(Figure 1), is a common method to assess lung function [13].
It provides objective information used in the diagnosis of
lung diseases and monitoring lung health [14]. Spirometry is
a physiological test that measures the maximum air volume
that an individual can inhale and exhale with maximal effort.
Either volume or flow of air is observed as a function of
time, which is later analyzed to identify subjects’ airways
obstruction or restriction severity. Typically, the PFT param-
eters such as FVC or FEV1 are normalized into percentages
based on the subject’s age, race, height, and gender.
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Human voice production is a complex process to which
the respiratory system significantly contributes as it gener-
ates the airflow that travels between the vocal folds, thus
providing the power source of the voice [15]. As a result of
an underlying pulmonary condition, the airflow diminishes
due to the obstruction or restriction of the airways, which
can compromise the subject’s voice or speech [16]. The
ubiquity of reliable and efficient microphones in many com-
modity devices such as smartphones and wearables makes
speech relatively convenient to monitor continuously. Hence,
it would eliminate the need for individuals to perform a
physically intensive task (spirometry) or wear an additional
device to assess their lung function.

In this paper, we focus on speech-based spirometry
(SpeechSpiro) as an alternative to measuring lung function
for mobile health tracking. We create a hybrid deep learning
model using a combination of convolutional neural networks
and long short-term memory networks (CNN-LSTM). The
model extracts spatiotemporal voice patterns in the speech
that correlate with obstruction or restriction of the respiratory
airways. It analyzes the underlying speech patterns to predict
the lung function parameters used in assessing pulmonary
conditions and the severity of underlying diseases.

In this work, our main contributions towards speech pat-
tern analysis, speech-based spirometry, and lung function
assessment are summarized in the following:

• Detailed analysis of voice/speech audio data and its
associated features and patterns that correlate with lung
function parameters (e.g., FEV1, FVC, FEV1/FVC) and
obstruction of respiratory airways (see Section III-A).

• Hybrid deep learning model using CNN-LSTM to iden-
tify localized patterns within short audio segments in
frequency domain, extract temporal patterns in speech
sequence using the learned high-level latent features,
and then correlate with the above-mentioned lung func-
tion parameters (see Section III-C).

• Methodology that uses a short period of speech audio
recording (e.g., 60 seconds) of an individual reading a
passage on a smartphone to assess the lung function
assessment - SpeechSpiro (see Section III-B).

• Analyze accuracy and generalizability of the Speech-
Spiro methodology compared to medical-grade devices
and state-of-the-art approaches using data collected in
two lab and clinical studies from 201 subjects of healthy
and diagnosed with asthma or COPD with a wide range
of severity (see Section IV).

II. RELATED WORK

A pulmonary function test is usually advised for all per-
sons who have respiratory complaints or shortness of breath.
In any person, particularly cigarette smokers or asthmatics,
spirometry will provide a baseline performance value to track
the progression of the condition. PFT is considered as one
of the first steps to diagnosis, management, and treatment of
respiratory diseases. Different approaches to this test have
been introduced which we explain in the following:

Clinical spirometry: Spirometry is typically carried out
in a clinical lab setting using medical-grade equipment as
the gold standard [17]. It involves a procedure where patients
should take a maximal inspiration and forcefully expel air for
as long and as quickly as possible. Typically, a pulmonologist
or general practitioner performs the test to instruct the
subject to put maximum effort and achieve reliable results.
A successful test produces a flow-volume curve. With the
knowledge of the expected appearance of a flow-volume loop
in healthy subjects, a pulmonologist can obtain information
of underlying conditions from the morphology of the curve
in patients with suspected respiratory disease (see Figure 2).
Patients with active respiratory infections are not precluded
from having spirometry. However, the tests should ideally be
deferred until the risk of cross-contamination is negligible;
this could be a limiting factor for lab-based spirometry.

Portable spirometry devices have become more preva-
lent and provide accessible alternatives to the expensive
medical-grade devices outside of the clinical settings, with
accuracy comparable to those obtained from the lab-based
devices [18], [19], [20]. It enables clinicians to remotely
monitor and track the progression of patients’ respiratory
conditions more frequently. On the other hand, peak flow
meters are another inexpensive and portable alternatives
to measuring maximum expiratory airflow. However, they
mainly reflect flow in the large airways, are effort-dependent,
and can be unreliable predictors of asthma exacerbations.

Non-contact spirometry: Discomfort, cost, and avail-
ability are the barriers associated with spirometry devices.
There have been increasing efforts in developing non-contact
respiratory monitoring methods and spirometry to over-
come these barriers. For example, new approaches measure
respiratory-related chest and abdominal movements and track
subtle changes of the chest wall using time-of-flight sensors
or active stereo depth-sensing systems comprising a near-
infrared (NIR) illuminator and a camera [21], [22], [23].
The displacement of the chest and shoulders are analyzed
during the inhalation and exhalation tasks to determine
the amount of air volume exchange over time and then
mapped to the lung function parameters. The non-contact
spirometry approaches demonstrate comparable results to the
conventional methods.

Audio-based spirometry: Researchers have demonstrated
that besides air pressure during the inhalation and exhalation
tasks, audio generated from the mouth correlates with the
spirometry parameters [24]. For example, an individual can
perform the spirometry task directly using the microphone
of a smartphone. Then, an algorithm would measure airflow
rate by calculating the envelope of the sound in the time
domain to predict lung function.

The above-mentioned conventional approaches to spirom-
etry require the performance of the exhausting spirometry
task. Meanwhile, lack of clinical supervision and difficulty
with the spirometry task may cause a drop in subjects’
compliance, thereby getting unreliable results. This variance
is in addition to underlying errors of the measurement due to
environmental factors during the spirometry session. These
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factors include body motion artifacts from the image-based
spirometry, background noise, and distance variation of the
microphone from the mouth in the audio-based spirometry.

Speech-based spirometry: Data and biomarkers collected
from more natural and passive approaches have been inves-
tigated as an alternative to overcome the above limitations.
For example, researchers have shown a correlation between
lung function and audio characteristics from cough sounds or
subjects continuously saying the ’A’ vowel (’aahh’) until they
run out of breath [25], [8], [26]. In another approach, which
is the primary focus of this paper, researchers analyzed the
speech and voice audio features to measure lung function.
A set of these features include pause time, fundamental
frequency, shimmer, jitter, and their derivatives. These voice
features are extracted from audio recordings of an individual
speaking for a short period. There has been a significant ad-
vancement in developing speech-based spirometry to provide
adequate prediction accuracy. However, certain factors still
limit the performance of these techniques in a real-world
implementation. For example, background noise and low
audio quality may compromise the validity of the extracted
features such as shimmer or jitter. Moreover, the respiratory
condition and severity of the obstruction, cognitive load
during speaking may unnoticeably affect the pause time.

In this paper, we address the limitations of the con-
ventional and state-of-the-art approaches. SpeechSpiro is a
pulmonary function test that utilizes spatiotemporal speech
patterns extracted from audio recordings of a subject reading
a paragraph. This methodology can be deployed on smart-
phones or wearables, eliminating the need for additional
devices or sensors. Moreover, there is no need to perform
the exhausting inspiratory and expiratory maneuvers in con-
ventional spirometry methods.

III. SPEECHSPIRO METHODOLOGY

Studies have demonstrated that voice characteristics are
affected by underlying lung conditions, such as obstruction
or restriction in the respiratory airways. In section III-A, cor-
relations between speech and lung conditions are explained
further in detail. In section III-C, we leverage these observed
correlations and create a hybrid deep learning model to learn
and extract spatiotemporal patterns within speech recordings,
and then utilize them to measure lung function parameters
(section III-B). Figure 3 depicts the high-level methodology
and the steps to lung function prediction.

A. Voice Audio and Respiratory Systems

Voice production is mainly carried out in the larynx in
three stages. Firstly, vocal fold vibrations create a voiced
sound where vocal tract resonators (throat, mouth, and nasal
passages) would modulate the voiced sound to produce a
human recognizable voice. Finally, vocal tract articulators
(tongue, palate, and lips) modify the voiced sound to produce
recognizable words or speech. Vocal folds vibrate when
excited; air pressure and flow from the lungs control the
open and close phases by creating a trailing “Bernoulli
effect” [27], [28], [29].

In Figure 2, on the left side, you can see the flow-
volume curves during inhalation and exhalation phases of
spirometry for subjects with different lung conditions. On
the right side, we calculated voice loudness and pitch values
for speech and pause segments of all subjects’ monologue
recordings; the values for these two features are plotted in a
2D histogram - brighter pixels showing values with higher
data points. The black line corresponds to the median values
of these features for subjects with ”mild” obstruction. The
red line corresponds to the median values for subjects with
”very severe” obstruction. The two obstruction severities are
identified based on the gold standard severity scale and each
subject’s pulmonary function test results. As you can see in
the figure, the flow-volume curves during inhalation (lower
charts) and exhalation (upper charts) show similar patterns
comparing to loudness during pause and speech segments.

Pitch and loudness of voice are affected by laryngeal
changes and respiratory changes. They tend to co-vary by the
airflow and subglottal pressure: the influence of the lungs. An
increase in airflow “blows” vocal folds wider apart, which
stay apart longer during a vibratory cycle – thus increasing
the amplitude of the sound pressure wave or loudness. An
increase in the frequency of vocal fold vibration, which is
affected by the airflow, raises the pitch. For example, it is
easier to sing a high note loudly than softly because of the
common factors of airflow and subglottal pressure.

As shown in Figure 2, similar to the expiratory maneuver
in a spirometry task, during a speech session, airflow rate
naturally decreases as the individual exhales and produces
voice. This is due to the fact that the lungs will not have
had enough air to provide sufficient subglottal pressure, the
longer an individual maintains speaking. This would result
in change in loudness and pitch of the voice, typically lower
loudness and pitch.

In subjects with underlying lung conditions, an obstruction
in the airways limits the airflow rate during exhalation
when producing voice (speaking) and during inhalation when
grasping for air (pauses between speech) (see Figure 2).
The lower inconsistent airflow rate within a speaking session
affects the loudness and pitch values of the produced voice,
and thereby speech pattern. On the other hand, in the case
of underlying inflammation in the lungs, the lung capacity
decreases, identified by a low-value FVC during spirometry.
The volume of air a subject can hold and their lung capacity
impacts the duration they can maintain voice production
(speaking). In other words, individuals with small lung
capacity may have to talk in shorter sessions and take pauses
more frequently in between.

Individuals with a more severe respiratory condition with
lower PFT parameters will have more difficulty maintaining
their airflow while speaking; hence, the pitch and loudness of
their voice will be inconsistent and affected more drastically.
This influence and change in the voice audio characteristics
can be observed over the period of a speech and pause
segment as the individual is freely speaking with frequent
pauses in between.

The stat-of-the-art methods heavily rely on average voice
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Fig. 2. Airflow-volume curves generated from spirometry session during inhalation and exhalation (on the left side) are compared with pattern of loudness
and pitch values during speech and pause segments of the audio recordings (on the right side) for subjects with different pulmonary condition.

audio characteristics of the whole speech session. Instead, in
this paper, we leverage the observed changes and patterns
of these voice audio characteristics and correlate them with
lung function parameters.

B. Speech Pattern Discovery and Modeling

Changes and patterns of voice loudness and pitch values
in an audio recording have shown to be correlated with
lung obstruction or restriction, and thereby the lung function
parameters (see Section III-A). Mel-frequency cepstral coef-
ficients (MFCC) of audio are frequent audio features used in
speech-based applications such as speech recognition; they
represent the signal power in each band of the frequency
domain. The MFCC values can be measured and extracted
from audio to extract audio patterns in the frequency and
time domain as an alternative to voice loudness and pitch.
We consider one of the PFT parameters (e.g., FEV1, FVC,
FEV1/FVC) as the prediction target output. Hence, we can
formulate the problem as sequential modeling and regression
problem that maps the sequence or time-series data of MFCC
features to each PFT parameter.

Recurrent neural networks (RNN) with long short-term
memory (LSTM) architecture have emerged as an effective
and scalable model for sequential data. They are effective in
capturing long-term temporal dependencies in a sequence.
The model relies on two sources of information to predict
future events. One source is derived from a set of recently
observed data; the other one is based on a hidden state
space defined by the LSTM that aims to abstract past
or context information. LSTM variant of RNN has been
adapted in different applications such as prediction of rain,
precipitation, speech emotion, stock market price movement,
and image labels. For the problem of speech-based lung
function prediction, the LSTM-based method can be used
to learn and extract the temporal dependencies and patterns
in the MFCC features. For example, an individual who has
limited lung capacity will have difficulty maintaining speech
which results in shorter speech activity and consequently

having to take longer and more frequent pauses. In other
words, an individual who can take a deeper breath during
pause time will consequently maintain a longer speech,
with more stable voice loudness and pitch. We believe
the temporal dependencies between voice characteristics of
speech and pause activities through MFCC features represent
the subject’s underlying lung condition and LSTM can help
capture those.

Although LSTM is effective to capture temporal pat-
terns, the redundancy in the fully connected layers may
not help capture spatial dependencies. On the other hand,
convolutional neural networks (CNN) have been seen as an
efficient model to capture spatial and temporal dependencies
for classification, localization, and segmentation of one-
dimension or multi-dimensional data. CNN architecture is
designed such that lower layers fine and detailed features
and the higher layers extract more class-specific information.
With enough training, CNNs can learn filters and extract
characteristics of the data without hand-engineering features.
CNN models have been adapted in different applications such
as classification and recognition of images, sound classes,
natural language processing, and atrial fibrillation (Afib)
detection. In our problem, we leverage a 2D CNN to learn
and extract spatial and temporal features in the time-series
data. For example, as we noticed in section III-A, individuals
with severe obstruction would have different patterns of voice
loudness and pitch values (or MFCC features) compared to
the individuals with normal lungs. Convolutional layers in
CNN can learn and extract these patterns that correlate with
individuals’ underlying lung conditions.

To take advantage of both models of LSTM and CNN, we
create a hybrid model that contains LSTM layers following
the CNN layers (see Figure 3). The convolutional layers
can capture localized spatial and temporal patterns in [sub-
sequences of] the time-series data and map them to higher-
level localized features for the LSTM layers to identify high-
level temporal dependencies in the overall sequence. CNN-
LSTM has been recently seen by the research community to
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be very effective and efficient to learn and model spatiotem-
poral patterns in sequences.

We use speech audio samples collected in our two research
studies to train the model. We have provided details of the
data collection procedure, data format, and how we split
the dataset for training and validation in section IV-A. Each
audio recording of a speech session can vary in duration;
hence, the audio is sliced into sequences of 60 seconds with
a hop length of 10 seconds. Each sequence of 60s audio is
processed to extract a 2D array of time-series MFCC features
containing. The features are sampled every 50ms over audio
frames with a sliding window size of 100ms.

Each of these feature arrays is input to the CNN-LSTM
model for training. To capture the localized spatiotemporal
features by the convolutional filters, each sequence of 60s
audio and its associated feature arrays are further split into
subsequences (Xt) with a duration of 6 seconds and hop
length of 3 seconds (50% overlap). Hence, each LSTM
cell - hidden state Ht and cell output Ct - processes each
subsequence to extract localized features and then identify
long short-term dependencies over the overall 60s sequence.
We have used kernel size of (5, 3) for 2D convolution filters
with strides of one. ’ReLu’ has been selected as the activation
function for the CNN layers and LSTM cells. Since we
are interested in one scalar target output, the LSTM layer
only outputs one value, the output of the last cell. Finally, a
dense layer with a ’tanh’ activation function follows the last
LSTM layer. The model is trained using Adam optimization
method and max pooling and drop out layers are utilized
properly to avoid overfitting. Model hyperparameters are
tuned such that it does not overfit the data. The training
process is early terminated after certain epochs and when
the difference between training and validation loss values
becomes significant.

Fig. 3. Diagram of the steps in SpeechSpiro methodology to extract and
utilize spatiotemporal speech patterns to predict lung function parameters.

C. Speech-Based Lung Function Assessment

In the SpeechSpiro methodology, a subject will read a
passage while a smartphone is recording the audio (see
Figure 3). The speech audio is then processed to extract the
MFCC features. Similar to the training stage, the features are
sampled every 50ms of audio frames with a sliding window
size of 100ms. We have noticed that slicing the audio and
its features into slices of 60s (hop length of 10s) and taking
the average of the predicted outputs would provide better
accuracy and less variation in the result. The 2D feature
arrays should be sliced into subsequences with a duration of
6 seconds and hop length of 3 seconds (50% overlap) to meet
the input dimension of the convolutional filters, similar to the
training stage. Finally, the model is applied to the sequence
of subsequences to evaluate the lung function parameters. It
needs to be noted that there is one individual CNN-LSTM
model trained for each lung function parameter.

IV. EXPERIMENTS

In this section, we describe the experimental setup, dataset,
implementation details, baseline models, and then analyze
the results and demonstrate the accuracy of our speech
pattern-based lung function assessment.

A. Experimental Setup

Datasets. To train and test the models and SpeechSpiro
methodology, we used the audio collected in two research
studies conducted in lab and clinical settings. Details of the
two studies and the data collection are as follows:

1) Lab Study: A total of 131 subjects (67 males
and 64 females) were recruited for this study - 40 were
healthy individuals and 91 were diagnosed with at least
one pulmonary condition, which included 69 subjects with
a history of asthma, 9 with COPD, and 13 reported having
a history of both asthma and COPD; the cohort of subjects
was decided based on self-reporting of their medical history.

In one session, we asked the subjects to read a predefined
text - ”Rainbow” passage - out loud for at least 3 minutes.
The ”Rainbow” passage is frequently used in speech analyses
due to its phonetic richness. The lung function was assessed
by a spirometry session performed using a GoSpiro portable
spirometry device under the supervision of a research assis-
tant, to ensure maximum effort was put into the test.

2) Clinical Study: A total of 70 subjects were recruited
for this study in partnership with a pulmonary hospital -
10 were healthy individuals and 60 were diagnosed with at
least one pulmonary condition which included 25 subjects
with asthma, 25 with COPD, and 10 with chronic cough;
the cohort of subjects was decided based on their medical
records. Similar to the lab study, in one session, we asked
the participants to read the ”Rainbow” passage out loud for
1 minute. Their lung function was assessed by a spirometry
session performed in a PFT lab under the supervision of a
pulmonologist, to ensure valid results were achieved.

In both studies, a Samsung Note 8 smartphone located
on a table 4ft from the subject was continuously recording
audio with a 44.1KHz sampling rate. The audio was later
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TABLE I
COMPARING PERFORMANCE OF DIFFERENT SPEECH-BASED LUNG FUNCTION ASSESSMENT METHODS

ON TRAINING AND TEST SUBJECT DATA FOR EACH OF THE PFT PARAMETERS.

segmented and annotated to extract the speech session and
label the start and end of each speech and pause segments.

Baseline Methods. We compared multiple machine learning
models and analyzed their performance. Here, we show the
results for our model comparing with a simpler CNN model
and with the state-of-the-art speech-based approach - Support
Vector Regression (SVR). In the ”Baseline SVR” approach,
we train the model using our dataset on the average values
of voice shimmer, jitter, pause time, and MFCC features [8].

Metrics. We calculate the performance in terms of the root
mean squared error (RMSE) and determination coefficient
R2. We also provide the normalized RMSE (NRMSE) values
for the target outputs scaled to [0-1] for ease of comparison.

Evaluation Strategy. A subset of subjects (10%) has been
set aside for testing where we exclude them from the training
process; we ensured that the subjects are uniformly split
based on their lung condition. Furthermore, we split the
data of the training subjects into two sets of training and
validation (80%-20%) for unbiased evaluation and tuning of
the model to avoid overfitting. Each case study in the paper
was repeated three times with shuffled data; we report the
average performance in the paper.

B. Experimental Results

We trained the predictive models on the training dataset
from both studies and provided the results for both the
training dataset and test subject dataset. The results for
the three methods and PFT parameters are summarized in
Table I. For each case study, the top method with the highest
R2 score appears in bold and underlined; and the second
method appears in bold only.

The results show that FVC prediction has the lowest
error and highest R2 score among all PFT parameters. We
believe speech pattern and the duration an individual can
maintain speaking highly correlates with FVC, which is
mainly determined by how much air the individual can hold.
Meanwhile, FEV1 requires higher effort in exhalation, which
is not always the case during a regular speech.

It is clear that utilizing frequency and temporal patterns in
MFCC features, which are extracted from speech, improves
the accuracy when comparing the performance of CNN
and CNN-LSTM methods with the Baseline SVR method.
Furthermore, the temporal information extracted from speech

sequence by the CNN-LSTM model improves the overall
performance, especially the R2 score when comparing with
the CNN method. This improvement is more prominent for
FEV1 prediction and in terms of the achieved R2 score.

The prediction performance of the CNN-LSTM model
against the Baseline method is depicted in Figure 4 by
plotting the measured values against the predicted values for
the whole dataset.

Fig. 4. Regression plots for predicted values versus ground truth values for
the whole dataset; regression line is drawn for each parameter that illustrates
the difference in R2 score for both methods.

As shown in the above figures, the speech-based prediction
of PFT parameters shows a linear correlation with measured
values from the gold-standard spirometry. However, the
linear correlation achieved in the CNN-LSTM method shows
lower RMSE and much higher coefficient determination with
an average NRMSE of 12% and R2 of up to 76%, compared
to the 18% and 21% for the Baseline SVR method.

We further analyzed the accuracy of the SpeechSpiro
method (CNN-LSTM) for different cohorts and groups of
individuals in terms of their lung condition and gender. As
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Fig. 5. Performance of the SpeechSpiro methodology (CNN-LSTM) for
different categories of individuals in terms of lung condition and gender.

shown in Figure 5, the difference in the mean NRMSE
between each group is very negligible as the model is
generalizable and capturing the whole range of subjects.

V. CONCLUSIONS

In this paper, we explained the limitations of current
lung function assessment techniques. We focused on a novel
method to extract and leverage speech patterns to predict
common PFT parameters. In this method, we developed and
utilized a hybrid deep learning model CNN-LSTM to analyze
60 seconds of speech recordings to predict FEV1, FVC,
and FEV1/FVC ratio. The method significantly outperformed
state-of-the-art techniques and models in terms of mean
normalized RMSE of (12%) and determination coefficient
(R2) of up to 76%. We believe, for future work, by utilizing
more audio samples, transfer learning, and data augmenta-
tion techniques, the performance of the speech-based lung
function assessment will further improve. Hence, it has
the potential to become a better alternative to conventional
spirometry techniques that require an additional device and
the performance of an exhausting maneuver.
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