
 

  
Abstract— We aim to evaluate the feasibility and performance of 
a novel hot flash (HF) classification algorithm based on multi-
sensor features integration using commercial wearable sensors.  
First, we processed feature sets from wrist-based multi-sensor 
data (photoplethysmography, motion, temperature, skin 
conductance and). Then, we classified (Decision Tree) 
physiological-recorded HFs (N=27) recorded from three 
menopause women, and we assessed the algorithm performance 
against gold-standard HF expert evaluation. The results 
indicated that while skin conductance features alone explain 
most of the variance (~65%) in HF classification, the multi-
sensor approach achieved above 90% sensitivity at 95.6% 
specificity in HF classification and showed advantages under 
conditions of signal corruption and different biobehavioral 
states (sleep vs wake). The proposed new multi-sensor approach 
showed being promising in HF classification using common 
commercially-available wearable sensors and target locations.  
 
Clinical Relevance— The development of “user-centered” 
accurate, automatic detection systems for HFs can advance the 
measurement and treatment of HFs. 

I. INTRODUCTION 
Hot flashes (HFs) are a thermoregulatory phenomenon that 
are a hallmark of the menopause transition. HFs are 
characterized by peripheral vasodilation and sweating, lasting 
1-5 minutes, that can occur hourly or daily [1]. HFs are the 
most common and disruptive menopausal symptom, affecting  
upward of 80% of women in midlife, and potentially 
persisting for several years [2]. 

The current gold-standard method for measuring HFs is the 
expert evaluation of sudden increases (2 uS/30s) in sternal 
skin conductance (SC) recorded via laboratory or ambulatory 
research-grade devices [3]. The development of automatic 
algorithms for HFs classification is on the rise, and current 
algorithms, including our own prior HF detection algorithm 
[4], are mainly based on sternum SC signal processing (e.g., 
using fixed SC threshold, pattern recognition techniques, 
neural networks, template matching). Of note, a multitude of 
other physiological changes (e.g., increases in heart rate, skin 
temperature) accompany the HF manifestation [4, 5], 
although there is variability in these changes based on factors 
like motion and biobehavioral state (e.g. wake vs. sleep (see 
[5]).  

No current solution exists within the consumer space for 
measuring HFs. In the current work, we introduce and 
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evaluate the feasibility and performance of a novel multi-
sensor approach to HF detection based on multi-feature 
integration from consumer-grade SC, temperature (T), motion 
(M) and photoplethysmography (PPG) sensors placed on the 
wrist. The wrist was chosen as a promising target location that 
could enable data collection via consumer smart wearable 
technology. Expert evaluation of sternum SC fluctuation was 
used as the gold standard reference for comparison.  In 
addition, we evaluated sensor performance for HF detection 
under two conditions: (1) sleep vs wake (2) sensor loss of 
contact or faulty sensors. 

II. METHOD 
A. Sample 
Three women (Age, mean ± SD: 55.6 ± 0.6 y) who reported 

having daily HFs participated in a ~12h lab-based study, that 
encompassed an overnight. A total of 27 physiological HFs 
were recorded from the women.  The study was reviewed and 
approved by Advarra Institutional Review Board (Protocol 
number: Pro00040686), and participants provided written, 
informed consent. 

Women were free from major mental and medical 
conditions, had undergone natural menopause, and none of 
them was currently taking hormone therapy. None of them 
had breathing or leg-movement related sleep disorders, 
confirmed by PSG. 

B. Procedure 
All recordings took place at the SRI International Human 

Sleep Research Laboratory. Standard PSG data collection 
(including electroencephalography, electromyography and 
electrooculography) was performed using Compumedics 
Grael 4K PSG:EEG (Abbotsford, Victoria, Australia), and 
sleep was scored according the American Academy of Sleep 
Medicine (AASM) guidelines [6].  

Physiological HFs were recorded and scored (2 uS/30s 
rises in SC) by experienced scorers, according to gold 
standard methods: sternal SC (64 Hz) was collected via two 
1.5 cm-diameter Ag/AgCl electrodes filled with 0.05 M 
potassium chloride Velvachol/glycol gel placed on either side 
of the sternum (about 4 cm apart; a 0.5-V constant voltage 
circuit was maintained between them) using a BioDerm SC 
Meter (model 2701; UFI, Morro Bay, CA) [see 5].  

Signals from a customized array of consumer-grade 
commercially available sensors (PPG: S/F SEN-11574 - 512 
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Hz; SC sensor: Grove 101020052 - 64 Hz; 3-axis motion 
sensor: NXP-FXOS8700 - 1024 Hz; T sensor: TI-
TMP36GT9Z – 16 Hz) were collected from each participant’s 
wrist (M and PPG sensors on the dorsal wrist; SC [also called 
Galvanic skin response] and T on the anterior wrist) and 
integrated with the Compumedics recording system, using a 
multi-channel output card (40-Ch Digital-to-Analog 
Converter: A/D-AD5370). A sample of physiological data 
acquisition is depicted in Fig.  1. 

 

 
Fig.  1 Co-registration of gold standard sternum skin conductance (SC) and 

consumer-grade commercially available multi-sensor signals from the wrist 
across a hot flash (HF) event (highlighted in the graph; HF duration: ~8 min) 
in one participant. T, temperature; PPG, photoplethysmography; M, motion. 

 
The data collection started ~3h before bedtime and 

continued overnight, until the morning awakening. Women 
slept in sound-attenuated and temperature-controlled 
bedrooms. 

C. Processing of multi-features from consumer-grade 
sensors 
We extracted features from all four sensors (SC, PPG, T, 

and M sensors). Every 15 seconds, we computed each feature 
using a windowing approach. We used left and right windows 
for each feature computation. We obtained the distinct feature 
sets for SC (SC and SC+), T, PPG, and M.  

Next, we describe the processed feature sets from multi-
sensor data; SC, skin conductance; T, temperature; PPG, 
photoplethysmography; M, motion: 
• SC feature set uses the HF onset output of a previously 

developed HF prediction algorithm [4], as a feature. We 
designate the HF onset as the ±2 minutes around the HF 
predicted onset. 

• SC+ feature set includes the SC set and the differential 
Area Under the Curve (AUC) of the SC signal. To 
compute the differential, we take the AUC difference 
between the last 250 s and the current window (±30 s). 
In addition, we double the derivative described in step 8 
of  our prior SC algorithm [4]. The SC+ feature set aims 
to represent both slow and fast rising SC responses 
using the AUC and the SC feature set, respectively. 

• T feature set computes the participant’s temperature 
average differential between the prior and following 

500 s. The feature aims to capture temperature changes 
before and after a HF event. 

• PPG feature set uses a FFT-based heart rate (HR) 
estimation. The HR estimation is averaged in two 
regions: 120 s before and after the window. The 
differential of the HR change is used as a feature. The 
PPG feature aims to capture HR changes before and 
after a HF event. 

• M feature set captures movements of the subject in the 
x, y, and z dimensions. We process each dimension 
separately and extract the absolute maximum 
displacement (AMD) (window ±30 s) for each 
dimension. For the x dimension, we use the raw AMD. 
For y and z, we use the AMD differential between y, z, 
and x as features. 

We time-aligned the features with the HF expert 
annotations for prediction and evaluation (±90 s matching 
window). Since all the features are processed independently, 
the system enables sensor specific feature selection. The 
selected features were fed into a Decision Tree classifier, 
which makes a decision every 15 s, whether or not the current 
frame is a HF by using multi-sensor information. Finally, 
using the decision output, we extracted the HF regions for 
each subject. 

III. ANALYSES  
The following analyses were conducted:  

1. Evaluated SC features vs multi-sensor features in the 
HF classification performance. 

First, we compared HF classification accuracy for the SC+ 
set vs the SC set. Then, we augmented the SC+ set with T, 
PPG, and M sets. 

2. Evaluated the HF classification performance as a 
function of whether the HF onset occurred during 
wake or sleep. 

We repeated the analyses of (1) with the same set of 
features (and the same system) but, in this case, we compared 
the sleep and awake regions as scored from PSG. We 
compared the impact of the sensors on the two conditions. 

3. Evaluated the HF classification robustness in a 
simulated noise environment. 

We repeated the experiments of (1) with the same set of 
features and system but, in this case, we simulated and 
corrupted the signals with sensor contact loss. To simulate 
sensor-contact loss (partial contact), we randomly selected 
15% of a participant’s session region and assigned the lowest 
value of the signal, for each sensor independently. 

In all the analyses, we randomly split our data in two sets, 
80% of data for training the Decision Tree and 20% for 
evaluating the system. We repeated this process using a 5-
fold, cross-validation setup until all data were used for testing. 
For the decision tree training, we used maximum depth 6 (6 
decisions from root to leaf) and 5 minimum samples per leaf 
(a decision applies to 5 or more samples in the data; if the 
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decision applies to less than 5 samples, we discard the 
decision). To ensure similar specificity (96.5±1%) across 
analyses, we oversampled the HF class to 1:2 ratio between 
the HF and non-HF regions. HF performance was evaluated 
in terms of system sensitivity (percent of true positives) and 
specificity (percent of true negatives) in HF detection 
compared to gold standard sternum SC expert evaluation.  

We computed the impact (contribution) of each sensor 
using the Shapley values method [7], assigning the optimal 
impact to each sensor given the consistency and additivity 
assumptions. For equal class representation, we ran the 
analyses by sampling to a 1:1 ratio between the two classes. 

IV. RESULTS 
A. SC features vs multi-sensor features 

 
Fig.  2 Hot flash classification performance as a function of the feature set 

or feature sets combination. Vertical bars represent mean and standard 
deviation. SC, skin conductance; T, temperature; PPG, 
photoplethysmography; M, motion. 

At 96.5% specificity, the SC+ set showed better HF 

classification performance than the SC set (+10.7% in 
sensitivity). The addition of the T, PPG, and M sets to the SC+ 
set resulted in further improvements (see Fig.  2). 

 
Fig. 3 Sensor contribution to the “SC+|T|PPG|M” system. SC, skin 

conductance; T, temperature; PPG, photoplethysmography; M, motion. 

 
The importance of the multi-sensor system is shown in 

Shapley values of each sensor for the best system 
(SC+|T|PPG|M) (see Fig. 3). While the SC signal accounted 
for the most variance in HF classification (~65%), using 
additional non-SC features further enhanced the classification 
performance.

 
Fig.  4 System performance for hot flashes (HFs) onsets occurring during sleep vs wake. Vertical bars represent mean and standard deviation. SC, skin 

conductance; T, temperature; PPG, photoplethysmography; M, motion. 
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Fig.  5 Hot flash (HF) classification performance as a function of the feature set or feature sets combination, in conditions of reliable and corrupted signals. 

Vertical bars represent mean and standard deviation. SC, skin conductance; T, temperature; PPG, photoplethysmography; M, motion.

B. HFs occurring during sleep vs wake
We observed a greater contribution from the non-SC 

features in the HF classification performance for HFs with 
onsets occurring during sleep vs wake (see Fig. 4). 

From the Shapley values, it is noticeable that the features 
contribution in the HF classification was greater for the PPG, 
SC, and M sets, while it was less for the T set, when 
comparing HFs with onsets occurring during wake vs sleep 
(Fig.  6). 

 
Fig.  6 Sensor contribution to the “SC+|T|PPG|M” system for hot flash (HF) 

onset occurring during sleep vs wake. SC, skin conductance; T, temperature; 
PPG, photoplethysmography; M, motion. 

 
C. HFs classification under simulated noise conditions 
When signals were corrupted, the HF sensitivity 

performance deteriorated (below 75% when using the SC 
features only), and the multi-sensor approach partially 
compensated for performance loss (see Fig.  5). 

V. CONCLUSION 
The current study shows initial feasibility and advantages 

for automatically detecting HFs in women, by using a multi-
sensor approach and consumer-grade sensors placed on the 
wrist, a commonly targeted location in the consumer wearable 
space. We show performance gains, performance differences 
during wake vs sleep, and robustness to missing sensors.  
Automatic detection of HFs can provide women and 
clinicians with new insight into HF patterns, trigger, and 
impact, advancing the field of women’s health. 

REFERENCES 
[1] R. R. Freedman, “Physiology of hot flashes,” Am J Hum Biol, vol. 

13, no. 4, pp. 453-64, Jul-Aug, 2001. 
[2] R. Bansal, and N. Aggarwal, “Menopausal Hot Flashes: A 

Concise Review,” J Midlife Health, vol. 10, no. 1, pp. 6-13, Jan-
Mar, 2019. 

[3] J. S. Carpenter, M. A. Andrykowski, R. R. Freedman, and R. 
Munn, “Feasibility and psychometrics of an ambulatory hot flash 
monitoring device,” Menopause, vol. 6, no. 3, pp. 209-15, 1999. 

[4] M. Forouzanfar, M. Zambotti, A. Goldstone, and F. Baker, 
"Automatic Detection of Hot Flash Occurrence and Timing from 
Skin Conductance Activity." 

[5] F. Baker, M. Forouzanfar, A. Goldstone, S. Claudatos, H. Javitz, 
J. Trinder, and M. de Zambotti, “Changes in heart rate and blood 
pressure across nocturnal hot flashes associated with or without 
arousal from sleep,” Sleep, vol. 42, no. 11, pp. pii: zsz175, 2019. 

[6] C. Iber, The AASM manual for the scoring of sleep and associated 
events: rules, terminology and technical specifications: American 
Academy of Sleep Medicine, 2007. 

[7] E. Štrumbelj, and I. Kononenko, “Explaining prediction models 
and individual predictions with feature contributions,” Knowledge 
and information systems, vol. 41, no. 3, pp. 647-665, 2014. 

 

50%

60%

70%

80%

90%

100%

No signal corruption Signal corruption No signal corruption Signal corruption

Specificity Sensitivity

SC SC+ SC+|T SC+|T|PPG SC+|T|PPG|M

68.2%

16.5%

10.5%
4.8%

HF onset during wake

SC+ T M PPG

58.3%
30.4%

7.9% 3.4%

HF onset during sleep

SC+ T M PPG

2070


