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Abstract— Surface electromyography (sEMG) signals are
now commonly used in continuous myoelectric control of
prostheses. More recently, researchers have considered EMG-
based gesture recognition systems for human computer inter-
action research. These systems instead focus on recognizing
discrete gestures (like a finger snap). The majority of works,
however, have focused on improving multi-class performance,
with little consideration for false activations from “other”
classes. Consequently, they lack the robustness needed for real-
world applications which generally require a single motion class
such as a mouse click or a wake word. Furthermore, many
works have borrowed the windowed classification schemes from
continuous control, and thus fail to leverage the temporal
structure of the gesture. In this paper, we propose a verification-
based approach to creating a robust EMG wake word using one-
class classifiers (Support Vector Data Description, One Class-
Support Vector Machine, Dynamic Time Warping (DTW) &
Hidden Markov Models). The area under the ROC curve (AUC)
is used as a feature optimization objective as it provides a better
representation of the verification performance. Equal error rate
(EER) and AUC are then used as evaluation metrics. The
results are computed using both window-based and temporal
classifiers on a dataset consisting of five different gestures,
with a best EER of 0.04 and AUC of 0.98, recorded using a
DTW scheme. These results demonstrate a design framework
that may benefit the development of more robust solutions for
EMG-based wake words or input commands for a variety of
interactive applications.

I. INTRODUCTION

Surface electromyography (sEMG) measures the electrical
activity produced by skeletal muscles during contraction.
The recorded signals contain a rich amount of information
associated with human motion intent [1]. It is extensively
used in continuous myoelectric control (for applications such
as prosthetics), where sustained contractions are used for
velocity or position control [2]. More recently, researchers
have begun to consider EMG for human computer interac-
tion (HCI) purposes with a focus on enabling multi-class
recognition systems. The most commonly seen application
for such an HCI is hand gesture recognition, which provides
a natural method of hands-free interaction with emerging
heads-up devices [3]. The majority of EMG-based HCI
efforts, however, have focused on the recognition of multiple
classes (such as for sign language recognition [4]), with little
consideration for false activations from ”other” classes. This
lack of consideration for unknown contractions, which are

*This work was supported by MITACS, Canada and the New Brunswick
Innovation Foundation

1P. Kumar, A. Phinyomark and E. Scheme are with the Institute of
Biomedical Engineering, University of New Brunswick, Fredericton, NB,
E3B 5A3, Canada pradeep.kumar@unb.ca, aphinyom@unb.ca,
escheme@unb.ca

inevitable in every day use, limits their applicability in real-
world situations.

Some attempts have been made to limit the number of false
activations by using techniques such as rejection thresholds
[5] or majority voting [6]. For example, Robertson et al. [5]
proposed a confidence-based rejection strategy to improve
the usability of myoelectric control systems. They designed
a Fitts’ law-style virtual cursor control system governed
using forearm EMG and a support vector machine (SVM)
classifier and determined rejection thresholds heuristically
to improve the overall performance of the system. A one-
vs-one classification scheme was similarly proposed in [6]
to reject unknown data patterns. The scheme was based on
uncorrelated linear discriminant analysis (ULDA) projection
and the distance threshold of the query data point to the
class means followed by a majority vote. Their approach
outperformed nine conventional classifiers; however, a fine
tuning of different thresholds was required for best per-
formance. Comparatively, there exists few works that have
explored the usage of a ‘wake’ gesture (or ‘click’) to
reduce the false activations [7], [8], although some have
explored the inclusion of IMU information to reduce the
likelihood of motion artifacts [9], however, EMG is still
considered as the gold standard for retaining gesture specific
information in comparison to IMU alone [10]. Tavakoli
et al. [8] proposed the inclusion of a ‘lock’ gesture to
reject unwanted movements. They used a fast double wrist
flexion gesture (similar to double impulse mode switching
in conventional EMG prosthesis control) to lock/unlock the
system, in addition to a 15s timeout to lock the entire system.
While possibly robust, such approaches detract from the
usability and responsiveness of the interface. In contrast,
the concept of gesture verification could be implemented to
inherently limit the false activations by design. Verification
systems are described as 1-to-1 matching systems, making
them a good choice for applications targeting only one class.
Furthermore, such a system would only require training of
the target gesture class, and could be accomplished using
one-class classifiers.

Most existing gesture recognition systems are also built
using time-independent classifiers such as SVM, LDA or
Naives Bayes [11]. These classifiers are trained on short win-
dows of (presumably stationary) data, following the approach
outlined by Englehart and Hudgins in 2003 [12]. This ap-
proach, when trained with a finite number of discrete classes,
can lead to a large number of false activations during gesture
transitions and other unwanted movements. The classification
performance of such systems can be improved using voting
strategies, but this imposes further constraints as the window
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lengths and the number of decisions involved in voting
remains fixed [13]. Rather, gestures may be represented as a
sequence of features that vary temporally, and this temporal
variation information can be used to improve classification.
For example, in a typical hand gesture recognition system,
looking at the hand’s position at a single point in time
during the transition may not robustly identify the gesture;
this can only be achieved by analyzing changes over time
[14]. Therefore, temporal classifiers could be used to classify
specific gesture movements more robustly to make them
robust to outlier movements that may contain similar features
but follow dissimilar temporal paths.

In this paper, we propose a verification-based scheme for
a robust EMG wake word in order to better reject the classi-
fication of outlier movements. We compare the performance
of both window-based (Support Vector Data Description
(SVDD), 1-class SVM (OC-SVM)) and temporal (Dynamic
Time Warping (DTW) , Hidden Markov Model (HMM)) one
class classifiers optimized using the area under an ROC curve
as their optimization metric for feature selection.

II. METHODS

A. Data Collection

Five healthy subjects participated in this pilot study. The
data were recorded using a custom-built device [15] on the
posterior side of their dominant wrist that consisted of two
bipolar EMG channels placed laterally, 2.7 cm apart. The
data were sampled at 600 Hz with an amplifier gain of
330x. Five repetitions each of five different gestures (thumb
extension, index extension, pinky extension, hand open, and
wrist extension) were recorded from each subject while in
a seated position. All subjects were asked to perform the
gesture naturally, initiating and releasing them at their own
subjective rates, instead of sustaining a set contraction level
for a fixed period of time. Subjects were also asked to elicit
contractions at a comfortable and repeatable force level.
All experiments were approved by the University of New
Brunswick’s Research Ethics Board under REB#2019-114.
The recorded data were then high-pass filtered at 20 Hz using
a 3rd-order Butterworth filter to remove any motion artifacts,
and notch filtered at 60 Hz using a 2nd-order infinite impulse
response (IIR) notch filter to remove power line interference.
Next, a Hilbert transformation [16] based technique was
applied to detect the onset of the gestures.

Classification results were computed by performing user-
dependent training of the classifiers using a leave-one-trial-
out cross validation scheme and the average results across
users were reported. Feature selection was conducted across
users using the area under the receiver operating curve (AUC)
as the criterion function. The set of features corresponding
to the maximum AUC across subjects for each classifier was
used in the gesture verification process.

Gesture verification was performed for a given motion
(e.g. index finger extension), and the remaining four gestures
were treated as outlier movements. Based on the different
classification schemes, different training protocols were fol-
lowed. For example, the SVDD and OC-SVM classifiers

were trained on a per-window basis and the confidence scores
were averaged across windows for the entire gesture. In
contrast, DTW and HMM were trained using the entire target
gesture sequence. A Euclidean distance metric with a limited
warping length constraint was used to get the similarity score
between gesture sequences when using DTW [17]. Based on
empirical testing, the HMM was trained using three states
and 64 Gaussian mixture components.

B. Feature Selection and Classifiers

Feature Extraction & Selection: Before feature ex-
traction, the data were segmented into 150 ms windows
with an increment of 25 ms. Thirteen different features
were explored: Mean Absolute Value (MAV), Slope Sign
Changes (SSC), Waveform Length (WL), Zero Crossings
(ZC), Mean Square Root (MSR), Maximum Fractal Length
(MFL),Time-Domain Power Spectral Moments (TDPSD),
Mean Absolute Values of the Second Difference (MAVSD),
Difference Absolute Standard Deviation Value (DASDV),
Willison Amplitude (WAMP), Sample Entropy (SAMPEN),
Difference Absolute Mean Value (DAMV), and Difference
Auto-Regressive Coefficients (DAR) [18].

To increase information density, a sequential feature se-
lection (SFS) technique was applied instead of other pro-
jection based techniques (PCA, ULDA) which transform all
features into the dimension-reduced feature space [19]. In
contrast, SFS examined each feature individually and adds
them iteratively until the objective function was satisfied.
Although classification accuracy is commonly employed
as the objective function, it does not consider the trade-
off between false-positive and false-negative samples. In
this work, the objective was not so much to improve the
classification performance of the system, but to optimize the
verification of gestures in order to limit the false activations.
For this reason, the area under the ROC curve was used as
the criterion function in feature selection. The ROC curve
is a graphical representation of the tradeoff between false-
positive rate (FPR) and true-positive rate (TPR) and, as such,
is considered to be an effective metric for assessing the
performance of verification models [20], [21]. By extension,
AUC measures the area underneath the entire ROC curve and
provides an aggregate performance measure for the tradeoff.
The higher the AUC, the better the model at distinguishing
the classes with minimal false activations. Therefore, by
optimizing the AUC during feature selection, the verification
performance of the system is optimized more stringently than
classification accuracy alone.

Classification: As with other verification problems (facial,
signature, etc.), gesture verification is a one-to-one matching
task, i.e., one must determine whether a particular gesture
occurred or not. Therefore, in this work, we assessed a family
of one-class classifiers including both window-based (OC-
SVM, SVDD) and temporal (HMM, DTW). Neither one-
class SVM nor SVDD classifiers are widely used in EMG
pattern classification. However, Liu et al. [22] demonstrated
the usability of an SVDD classifier to filter the non-target
gestures when the authors trained an ensemble of SVDDs,
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Fig. 1: ROC curves for gesture verification for Index extension across different classifiers.

one for each target class. For a given training set (T ), the
SVDD classifier aims to find the minimum-volume sphere in
the feature space with center (c) and radius (r) such that all,
or most of the training patterns are enclosed by the hyper-
sphere. The hypersphere boundary is then used to distinguish
between target and not-target data points [22]. Likewise, OC-
SVM is an extension of SVMs and is commonly used in
anomaly detection problems [23]. The classifier estimates
a probability distribution that encompasses most of the
observed training data and then labels those which lies far
from the distribution as ‘suspicious’.

Alternatively, sequential classifiers like HMM and DTW
have been used in a handful of EMG gesture recognition
problems for tasks such as transition-point detection [13]
and sign-gesture recognition [24]. However, most of the
existing works with these approaches have focused on the
classification of multiple gestures, and not restricting outlier
motions in a verification framework. Consequently, in this
work, we use both HMM and DTW as one-class classifiers
as part of a robust gesture verification system. HMM models
are typically represented by three tuples (π,A,B), where
π is the initial state probabilities and A denotes the state
transition matrix from one state to other. Lastly, B is the
observation probability that is modeled with the continuous
probability density function for a given state. The model
was trained using the Baum-Welch algorithm for initial
output probability re-estimation and for maximizing the like-
lihood of the training set [25]. Likewise, DTW is popularly
used for measuring the similarity between two time-series
that may vary in time or speed. The algorithm recursively
computes distances between two series and allows a non-
linear mapping between them in the time-dimension by
minimizing their distance. Thus, the similarity between the

two time-series is generally represented by the DTW distance
measure [26]. In this work, DTW distances were computed
between the various instances of the target EMG gesture
and a corresponding distance threshold was stored for the
verification of test gestures.

C. Gesture Verification

For a given query gesture, the verification of its gen-
uineness was computed based on a threshold value (th).
Depending on the algorithm, the threshold value was a
similarity measure or a distance value from the decision line
defined for the genuine gesture. If the similarity measure was
lower than the selected threshold for the classifier, the gesture
was accepted as genuine, and it was otherwise rejected as
an outlier motion. The verification decisions for all gestures
were governed by Eq. (1), where ‘X’ and ‘th’ represent
the query gesture and threshold value, respectively. If the
similarity measure (Sm) of the query gesture was less than
‘th’, the gesture was treated as a target gesture.

Decision(X|Sm) =

{
Target gesture, if Sm < th

Outlier, otherwise
(1)

III. RESULTS & DISCUSSION

To evaluate their verification performance, ROC curves
were generated for the different classifiers by varying their
decision thresholds. The AUC was then recorded for each as
shown in Fig. 1. This performance reflects the results for each
classifier when using the features selected by the AUC-based
SFS process, whose results are outlined before. The DTW-
based gesture verification scheme outperformed the other
classifiers with an average AUC score of 0.98. The DTW
also yielded the minimum EER of 0.04, as shown in Table
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Fig. 2: AUC-based sequential feature selection across different classifiers: (a) SVDD, (b) OC-SVM, (c) DTW, (d) HMM.

I. This was observed to be due to the temporal modelling
of the gesture using DTW, whereas the conventional classi-
fiers were unable to learn the gesture template sequentially.
Moreover, in the case of OC-SVM and SVDD, because the
decision was based on average of the confidences across
the windows of a gesture sequence, any misclassifications
lowered the aggregate confidence score for target gestures.
The HMM classifier yielded the second highest performance
with an AUC of 0.96, along with SVDD. However, because
training and tuning of the HMMs required more data, a frame
increment of 2 ms was used during feature extraction for this
scheme.

Feature Selection: During feature selection, both the se-
quential classifiers, HMM and DTW, converged quickly, with
three (MFL, DAR & MSR) and two (MFL & DAR) features,
respectively. By contrast, the time-independent classifiers,
OC-SVM and, SVDD required a greater number of features
to reach their best performance as seen in Fig. 2. For
example, SVDD started with DASDV, DAR and TDPSD
features but then added ZC & MFL features before con-
verging. A similar trend can be seen with the OC-SVM
classifier. This is likely because the sequential classifiers
leveraged the temporal structure of the signals, and thus
were more easily able to differentiate between target and
non-target gestures. Also, the windowed classifiers naively
assume that the class distributions are constant across the
full gesture, requiring additional information to overcome
the correspondingly reduced separability. This again demon-
strates the power of the sequential classifiers for robust
EMG-based gesture recognition applications.

To demonstrate the impact of the proposed AUC-based
feature selection scheme, the AUC and EERs were compared
with those obtained when selecting features based on the
classical classification-error objective function. The results,
presented in Table I, show that the AUC-based feature selec-
tion scheme outperforms the accuracy-based scheme for all

classifiers. Although this is partially because the optimization
criteria more closely aligns with the evaluation criteria, it also
shows that the consideration of false positive and negatives
in the feature selection process is able to reduce their impact
during testing, and likely during real-world usage situations.

TABLE I: A comparison of gesture verification performance (AUC and EER) when
comparing accuracy vs AUC-based feature selection. Note: CE is Classification Error

Classifier
SFS Criteria

CE AUC
AUC EER AUC EER

SVDD 0.80 0.24 0.96 0.11
OC-SVM 0.68 0.44 0.95 0.17

DTW 0.91 0.2 0.98 0.04
HMM 0.69 0.4 0.96 0.08

In considering the real-world application, a single-motion
EMG-based gesture verification system (e.g. a mouse click
or wake word), must employ a gesture that is robust to
outlier motion artifacts and other gestures. The above results
considered the use of index extension as the target motion,
however, others could similarly be candidates. Consequently,
a comparison of the different gestures was conducted, each
time considering one gesture as the target, and all other
gestures as extraneous motions. The results were computed
using the DTW technique identified previously, and shown
in Fig. 3. It can be seen that the index extension motion
obtained the maximum AUC of 0.98. As in Fig. 3, it can also
be noted that the index extension ROC starts with a TPR of
96% and 0% false positives, whereas the other gesture ROCs
yield much lower TPRs for 0% FPR. Thus, a single-gesture
application using a wrist-based EMG (with electrodes on the
dorsal side) should consider index extension as the target
class.

It should be noted that the proposed gesture verification
system was implemented and tested on a limited number
of gestures. These gestures represent common hand and
finger movements, but do not cover the full range of pos-
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Fig. 3: ROC-AUC curves across different gestures using DTW.

sible movements. Thus, this study should be considered as
preliminary work in this regard. Moreover, the performance
of the system is compared among one-class classifiers, but
future work should consider other classification techniques as
well. Additionally, data from more subjects and more classes
should be collected to further evaluate the robustness of the
proposed system, and improve the resolution of the ROC
curves.

IV. CONCLUSION

In this work, we proposed a robust gesture verification-
based scheme for an EMG wake word. The verification
process was carried out using both sequential and traditional
classifiers and the performance was evaluated using ROC
curves. Considering false positive and negative rates dur-
ing the feature selection process improved the verification
results. DTW was found to be more robust to outlier move-
ments and yielded a high TPR, with a maximum AUC of 0.98
and an EER of 0.04. Index-extension was found to be most
relevant gesture for single class based HCI applications. In
the future, the performance of the proposed system could be
improved by including IMU information along with EMG.
Additionally, more repetitions of data, more subjects, and
potentially leveraging deep learning techniques may further
boost the system’s performance.
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