
  

    

Abstract— Image registration is a fundamental and crucial 
step in medical image analysis. However, due to the differences 
between mono-mode and multi-mode registration tasks and the 
complexity of the corresponding relationship between multi-
mode image intensity, the existing unsupervised methods based 
on deep learning can hardly achieve the two registration tasks 
simultaneously.  In this paper, we proposed a novel approach to 
register both mono- and multi-mode images in a same frame-
work. By approximately calculating the mutual information in a 
differentiable form and combining it with CNN, the deformation 
field can be predicted quickly and accurately without any prior 
information about the image intensity relationship. The 
registration process is implemented in an unsupervised manner, 
avoiding the need for the ground truth of the deformation field. 
We utilize two public datasets to evaluate the performance of the 
algorithm for mono-mode and multi-mode image registration, 
which confirms the effectiveness and feasibility of our method. 
In addition, the experiments on patient data also demonstrate 
the practicability and robustness of the proposed method. 

I. INTRODUCTION 

Accurate integration of complementary information from 
different medical images is essential for assisting doctors in 
disease diagnosis and treatment, and the premise is that images 
are spatially aligned. Therefore, image registration is clinically 
significant [1]. However, the image registration problem is 
usually ill-posed, and medical images are susceptible to noise 
and artifacts. Besides, the non-linear correspondence between 
intensities of different mode images increases the difficulty of 
image registration. Therefore, medical image registration 
remains a challenging problem [2, 3]. 

In order to restore various deformations in medical images, 
researchers have made numerous efforts in traditional registra-
tion methods, and proposed many non-rigid registration algori-
thms, such as B-spline [4] and Large diffeomorphic distance 
metric mapping (LDDMM) [5]. However, such traditional 
registration methods require complex optimization and are 
time-consuming. Recently, to improve the computational 
speed of traditional registration methods, estimating the 
deformation field by neural networks has received much 
attention. Balakrishnan et al. [6] proposed an unsupervised 
CNN-based deformable registration algorithm (Voxelmorph). 
The registration of T1 MRI of different individuals was 
achieved by optimizing the cross-correlation between fixed 
and moving images. Later, other researchers suggested some 

 

improvement strategies, which enhanced the ability to deal 
with large deformation [7], or avoided the spatial folding of 
moving images [8]. Zhu et al. [9] integrated non-rigid 
registration network and affine alignment network to achieve 
actual end-to-end registration. But these methods are all for the 
mono-mode image registration. Fan et al. [10] developed an 
adversarial similarity network for multi-modality image 
registration, which introduced a discriminator network to 
determine whether the images were well aligned, and the 
registration network was trained under the guidance of the 
feedback of the discriminator. Although this method can 
realize multi-mode registration, the discriminator should be 
trained with aligned images, limiting its practical application. 

Generally, the registration of mono-mode images collect-
ed at different times is helpful for disease follow-up, and the 
multi-mode image registration is beneficial for integrating 
multi-scale information for disease diagnosis. Although the 
DL-based image registration algorithms have been widely 
studied, as far as we know, and there is still a lack of method 
that can achieve mono-modality and multi-modality image 
registration at the same time. To address the aforementioned 
issues, we proposed an unsupervised convolutional neural 
network to complete fast and accurate deformable registration 
of mono-/multi-mode images in the same framework. The 
effectiveness and feasibility of the proposed method were 
verified on two public datasets, and the practicability and 
robustness were confirmed by experiments on patient data. 

II. METHODS 

A. Problem Formulation 
The proposed deformable registration framework that can 

achieve two types of registration tasks is shown in Fig.1. Let 
𝐼!, 𝐼" be two sets of image data in 3D space, which are moving 
and fixed image in the registration task, respectively. The 
purpose of registration is to determine the deformation field Φ, 
so that the deformed moving image can be accurately aligned 
with the reference image. We assume that the fixed and the 
moving image have been affine registered during the 
preprocessing stage, so the sources of misalignment between 
them are only non-rigid deformations. Therefore, image 
registration can be expressed as such an optimization problem: 

 Φ# = 𝑎𝑟𝑔min
#
ℒ(𝐼" , 𝐼! , Φ) (1) 

 ℒ(𝐼" , 𝐼! , Φ) = ℒ$%&(𝐼" , 𝐼! ∘ Φ) + λℒ'()(Φ) (2) 

where, ℒ$%& is the similarity loss, and ℒ'() is the regularizer 
term. In DL-based methods, the deformation field is usually 
expressed as Φ = 𝑓*(𝐼" , 𝐼!), and 𝜃 is the learnable parameters. 

B. Deformable Registration Network 
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The deformable registration network is used to correct the 

local misalignment. As shown in Fig.1, the encoder down-
samples the input images by stride convolution, and extracts 
the features at multiple resolutions. The decoder performs up-
sampling and convolution to restore the resolution of the 
feature map. We performed Leaky ReLU activation after each 
convolution layer, and the last convolution layer converts the 
results into a flow field. The kernel size is 3 × 3 × 3. The 
features of different receptive fields are transmitted to the 
decoder through the skip-connection, which can achieve multi-
scale feature fusion and improve the robustness of the network. 

C. Differentiable MI-based loss function 
The proposed framework for both types of registration 

tasks obtains the optimal parameters by minimizing the loss 
function. To calculate the loss value in real-time during the 
training stage, we utilize the spatial transformer (STN) to 
obtain the deformed moving image 𝐼!(Φ) [11]. 

It is well known that multi-modality images have more 
complicated intensity correspondences than mono-modality, 
which causes the failure to promote mono-mode registration 
methods to multi-mode registration tasks. To solve this 
problem, we harnessed mutual information (MI) as the 
similarity measure, which is the key to ensure the success of 
the experiments. The definition of MI is as follows: 

 𝑀𝐼(𝐼! , 𝐼") = ∑ 𝑝(𝑚, 𝑓)𝑙𝑜𝑔 +(&,.)
+(&)+(.)&,.  (3) 

𝑚 and 𝑓 are the gray values in the moving and the fixed image, 
respectively. 𝑝(𝑚)  and 𝑝(𝑓)  are the marginal distributions, 
and 𝑝(𝑚, 𝑓) is their joint distribution. The better the alignment, 
the greater the MI. But the discrete MI cannot be used in the 
optimization, so we approximate it in a differentiable form. 

We divided the image into several gray levels. Each voxel 
contributes not only to the marginal distribution of the gray 
level it falls into, but also a series of gray levels. Parzen density 
estimation was employed to describe this process. For a given 
series of sample B, the contribution of each sample b to 𝑝(𝑚) 
is a function of its distance from 𝑚: 

 𝑝0(𝑚) =
1
2
∑ 𝑊(𝑚 − 𝑏)3∈0  (4) 

and Gaussian function was adopted as the weight function: 

 W(m− b) = A1 σ√2π⁄ He5
("#$)&

&'&  (5) 

Similarly, the joint probability distribution can be obtained: 

 𝑝0,6(𝑚, 𝑓) =
1
2
∑ 𝑊(𝑚 − 𝑏)𝑊(𝑓 − 𝑐)3∈0,7∈6  (6) 

By substituting (4)-(6) into (3), the differentiable MI can 
be obtained. Therefore, the similarity loss is: 
 ℒ$%&(𝐼" , 𝐼! ∘ Φ) = −𝑀𝐼(𝐼!(Φ), 𝐼") (7) 

Besides, we exploited the spatial gradient of the deforma-
tion field to regularize its smoothness and continuity: 

 ℒ'()(𝛷) = ∑
+∈8

‖𝛻𝛷(𝑝)‖9 (8) 

Thus, the entire loss function is shown in (2), and 𝜆 is the 
weight of the regularization. The network was trained by 
minimizing the loss function with standard back-propagations.  

III. EXPERIMENTS AND RESULTS 

A.  Dataset and implementation details 
We first evaluated the proposed algorithm on two public 

datasets, LPBA40 [12] and IXI [13]. LPBA40 includes 40 
T1w MRI volumes, and each volume has a segmentation mask 
with 56 anatomical labels. 992 pairs of data composed of 32 
volumes were used as the training set, and 56 pairs of data 
consisting of 8 volumes were used as the test set. Multi-
modality registration used 483 groups of T1w and T2w MRI 
images in the IXI dataset, and the ratio of training to test data 
is 4:1. Firstly, we performed a standardized preprocess on all 
IXI data, including spatial resample, crop and affine alignment.  

For mono-mode registration, we compared the proposed 
method with the classic Voxelmorph. For multi-mode image 
registration, our method was compared with two of the state-
of-the-art algorithms: SyN [14] and B-spline [4]. The two 
methods were implemented by ANTs and Elastix, respectively, 
and MI was used as the similarity measure. Notably, when 
reproducing the algorithms, we tried various parameters and 
finally selected the one with the best registration effect. 

B.  Results on public dataset 
In the experimental stage, the proposed deformable reg- 

istration framework for both mono- and multi-mode images 
was evaluated qualitatively and quantitatively. The speed and 
accuracy were compared with the baseline methods.  

The qualitative results of mono-mode and multi-mode 
image registration are shown in Fig. 2 and Fig. 3, respectively. 
It can be seen intuitively that the results gained by our method 
are fully aligned with the fixed images in key structures, and 
the registration effect is better than that of baseline methods. 

  
Figure 1. Illustration of the proposed deformable registration framework. The input fixed and moving image can be in the same mode or different mode. 
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In addition, we use the Dice similarity coefficient (DSC) 

of the warped and the reference segmentation mask to 
quantitatively compare the performance of mono-mode regis-
tration, and employ MI to evaluate the results of multi-mode 
registration. Besides, the structural similarity (SSIM) and peak 
signal-to-noise ratio (PSNR) are also used to quantify the 
registration effect of mono- and multi-mode. As Table 1 and 
Table 2 show, deformable transformation can significantly 
improve the registration effect, and the proposed method can 
obtain better quantitative indicators than the existing methods. 

Registration speed is another crucial factor in evaluating 
the practicality of registration algorithms. As shown in Table 
1, we counted the running time of the mono-mode registration 
algorithms on NVIDIA GeForce GTX 1080Ti GPU. Both 
methods can complete the entire registration process within 
0.4s. As shown in Table 2, since ANTs and Elastix software 
do not have GPU versions, to make a more intuitive compar-
ison, we measured the running time of our method on Intel 
Core i7-7800X CPU, and the average speed is more than 18 
times faster than B-Spline and 300 times faster than SyN. 

C.  Results on patient data 
We also validated in practical clinical applications. Due to 

the limited amount of patient data, we did not retrain the 
network, but directly tested the trained model on patient data. 

A typical clinical application of mono-mode image 
registration is disease follow-up. In the chemotherapy of 
brainstem glioma, the tumor volume change is vital for 
assisting doctors in evaluating efficacy. However, to obtain the 
tumor volume, doctors need to manually mark the tumor 
boundary on each MRI scan, which is time-consuming and 
laborious. Therefore, we hope to realize the labeling of all data 
based on the tumor label of the baseline image. 

Approved by the ethics committee of Beijing Tiantan Hos-
pital Affiliated to Capital Medical University and the informed 
consent of patient, we collected the pre and post-chemotherapy 
MRI image of a brainstem glioma patient, which were used as 
the moving and the fixed image respectively, and the predicted 
deformation field was applied to the baseline tumor labels. The 

  
qualitative results were shown in Fig. 4, the difference 
between the fixed and moving image is significantly reduced, 
which shows that the deformation field accurately describes 
the misalignment between the two images, which ensure the 
accuracy of the warped tumor label, and the DSC between the 
predicted results and the ground truth can reach 88.70%.  

Multi-mode registration is usually used to integrate the 
information of different modality images to assist doctors in 
disease diagnosis. Taking Alzheimer’s disease (AD) as an 
example, intracranial vasoconstriction is an early symptom of 
AD. In the diagnostic images, T1w images can reflect the 
atrophy pattern and degree, and T2w images can reveal the 
degree of vascular changes. Hence, comprehensive analysis of 
the changes in brain tissue and vascular are contributed to the 
early diagnosis of AD. But, during image acquisition, many 
factors such as respiratory and head movement may cause non-
rigid deformations, which will lead to errors in image fusion. 

To verify the practicability of our method in solving this 
problem, three groups of patient data were randomly selected 
from the OASIS-3 [15] dataset, and the obtained results are 
shown in Fig.5. The qualitative results indicated that our 
method could align image details, and the average MI value 
was also improved from 0.5464 to 0.7692. It can also be seen 
that the structure in the post-registration difference map is 
clearer and closer to the reference image, which demonstrates 
that the structure of the warped image corresponds to that of 
fixed image, and only the difference of image intensity exists. 

IV. DISCUSSION AND CONCLUSIONS 

Due to the difference between various registration tasks 
and the complexity of the intensity relationship between multi-
mode images, it is a challenging task to complete the two 
registration tasks simultaneously in an unsupervised manner. 
In this article, we proposed a novel registration algorithm. By 
introducing the differentiable MI as the similarity measure, the 
problem of intensity correspondence between different mode 
images was effectively solved. Meanwhile, the linear relation-
ship between mono-mode image intensities was also taken into    

 

 
Figure 2. Comparison of mono-mode registration results obtained 
different methods. At the position indicated by the red boxes, the 
proposed method obtained better effect than the baseline method. 

 
Figure 3. Comparison results of various methods for multi-mode image 
registration. The areas marked by yellow boxes show that the proposed 
algorithm has a significant improvement over the baseline methods. 

Table 1. Quantitative comparison of the speed and accuracy of mono-mode image registration using the proposed method and the baseline method. 

Method 
Quantitative evaluation index 

DSC SSIM PSNR CPU time(s) GPU time(s) 

Affine 0.5207 (0.0022) 0.9828 (0.0003) 16.6749 (1.8787) 0 0 
Voxelmorph 0.5766 (0.0015) 0.9927 (0.0001) 26.7577 (4.8810) 11.1556 (0.0390) 0.3683 (0.0010) 
Our Method 0.5821 (0.0016) 0.9928 (0.0001) 27.0761 (5.0311) 11.0296 (0.0932) 0.3533 (0.2158) 
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account, which reduced the development cost of designing 
various algorithms for different registration tasks. 

In previous works, Zhu et al. [16] proposed a multi-mode 
image registration algorithm based on structural representation. 
Although this method has the potential for mono-mode 
registration, the accuracy relies heavily on the effect of feature 
extraction. Xu et al. [17] utilized the improved Cycle-GAN to 
generate images from one mode to another, and used the 
texture information to constrain the predicted deformation 
field. However, the accuracy of image generation is difficult 
to guarantee. Therefore, we predict the deformation field 
directly based on original images is more robust and universal. 

Nevertheless, there are still areas that need improvement. 
First, we have only conducted experiments on a small clinical 
dataset, and directly used models trained on public data. 
Further experimental verification is needed on enough patient 
data. Second, registering the structural and functional images 
to get the anatomical position of functional information is a 
more challenging task, which is essential for diagnosing 
neurodegenerative diseases, so it should be further studied. 

In conclusion, we demonstrated the performance of our 
method on the same and different mode brain images. The 
algorithm can register images without the ground truth of the 
deformation field. Moreover, the results showed that the 
method was compatible with two registration tasks, and can 
obtain comparable performance with the most representative 
methods. Meanwhile, the experiments on patient data also 
demonstrated the capability of the method in clinical problems. 
Besides, although the patient data were distinctly different 
from the data of normal volunteers, a stable result was still 
obtained, which verified the robustness of the method. 
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Table 2. Quantitative comparison of the speed and accuracy of multi-mode image registration using the proposed method and the baseline methods. 
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Figure 4. The image registration results of brainstem glioma patients and 
the tumor segmentation results based on the proposed strategy. Yellow: 
the manually delineated tumor boundary in the post-chemotherapy 
image. Red: the tumor boundary in the pre-chemotherapy image. Green: 
the tumor boundary obtained by the proposed segmentation strategy 

 
Figure 5. The registration results of T1w and T2w MRI images for 
Alzheimer’s patients and the difference maps. 
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