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Abstract— We consider the problem of denoising low-dose x-
ray projections for cone-beam CT, where x-ray measurements
are typically modeled as signal corrupted by Poisson noise.
Since each projection view is a 2D image, we regard the low-
dose projection views as examples to train a convolutional
neural network. For self-supervised training without ground
truth, we partially blind noisy projections and train the de-
noising model to recover the blind spots of projection views.
From the projection views denoised by the learned model, we
can reconstruct a high-quality 3D volume with a reconstruc-
tion algorithm such as the standard filtered backprojection.
Through a series of phantom experiments, our self-supervised
denoising approach simultaneously reduces noise level and
restores structural information in cone-beam CT images.

I. INTRODUCTION

Onboard cone-beam computed tomography (CBCT) is
commonly used for patient setup and adaptive replanning
in radiation therapy. Although CBCT is capable of quickly
producing on-treatment patient anatomy, the repeated utiliza-
tion of CBCT has increased concern about the risk of the
radiation dose [1]. To reduce radiation exposure of patients,
low-dose protocols with tube current modulation and lower
tube voltage have been applied to CBCT imaging [2], [3].
However, low-dose CBCT protocols also decrease signal-
to-noise ratio (SNR) in x-ray measurements, which may
adversely affect their clinical usefulness [4], [5].

Deep learning has become a dominant machine learning
tool in visual recognition and image processing [6]–[8].
Such advances in deep learning are being used to denoise
low-dose CT (LDCT) images. The majority of previous
deep learning approaches for LDCT denoising depend on
supervised learning with the normal-dose CT (NDCT) image
as a ground truth of LDCT images [9]–[12]. Although the
supervised learning approaches have shown outstanding de-
noising performance, acquiring LDCT-NDCT pairs requires
redundant CT scans of the same patients, which deliver
additional radiation dose [9]–[12].

Recent studies on self-supervised learning have demon-
strated that denoising networks can be trained without the
use of clean references [13]–[16]. A pioneering work known
as noise-to-noise training [13] has shown that training a
denoising network from pairs of noisy images, which are
independent noisy samples of the same underlying ground
truth, is equivalent to learning to predict the clean image.
As a step further, self-supervised learning, which requires
neither clean targets nor noisy image pairs in denoising tasks,
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has been proposed [14]–[16]. The studies on self-supervised
denoising rely on blinding some pixels of the input image and
training CNNs to predict the blinded pixels from other pixels.
When the noise is independent across pixels and the images
are structured, the self-supervised learning approaches in fact
predict the true images.

In this paper, we focus on denoising low-dose CBCT
projection views by training a convolutional neural network
without ground truth. As an alternative to supervised learn-
ing, we propose a self-supervised learning approach with
blind filtering, which learns structures from low-dose x-ray
projections alone. With the projection views denoised by
the self-supervised learning model, we can reconstruct a 3D
CBCT object with the standard filtered-backprojection (FBP)
algorithm. The experimental phantom studies show that the
self-supervised denoising network simultaneously reduces
noise level and restores anatomical information in CBCT
images as well as projections.

II. METHOD

A. Statistical Loss for CBCT Projection Denoising

If we vectorize the attenuation coefficients of a 3D CBCT
object as u ∈ Rn, the discrete version of line integral can
be expressed as

pi = aTi u, (1)

where aij is the length of intersection between the i-th path
and j-th voxel uj . With the incident photon number N0i, the
measured photon number yi has Poisson distribution

yi ∼ Poisson(N0ie
−pi), (2)

where the mean is given by ȳi = N0ie
−pi . By collecting the

line integrals which belong to the same projection view, we
denote the vectorization of 2D projection view by y ∈ Rm.

In order to obtain the line integral pi for i = 1, . . . ,m, our
goal is to train a convolutional neural network G : Rn → Rn

which estimates ȳ from the measured projection view y. For
the measured projection view y, we can define residual sum
of squares (RSS) as

RSS = ‖ȳ − y‖`2 , (3)

where ȳ is the mean of projection view y. With the given
data set Y = {y(1), . . . ,y(K)} consisting of K projection
views, we define our loss function

LRSS(G;Y ) = EY ‖G(y)− y‖`2 , (4)

where EY denotes the empirical expectation over y ∈ Y .
Here, we expect that the denoised projection views are close
to the mean of projection views, i.e., G(y) ≈ ȳ.
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B. Self-supervised Projection Denoising
Optimizing G to minimize the loss function LRSS in (4)

results in a trivial solution since the identical transform,
which holds G(y) = y for any y ∈ Rn, achieves the global
minimum. Alternatively, we apply self-supervised learning
to the loss function LRSS in (4). Following the theoretical
framework [14], we employ blind filtering for self-supervised
learning.

We first define a set of blind spots J ⊂ {1, . . . , n}, which
is a subset of projection dimension, and yJ ∈ R|J| denotes
a subset of projection view y ∈ Rn corresponding to J .
If a function f(y) does not depend on the value of yJ ,
we call f a J-invariant function with respect to J . We use
a moving average filter fJ : Rn → Rn, of which kernel
value at the center is assigned to zero [14], [15] for blind
filtering. By striding over the input projection data, the filter
blinds the central values and interpolates the values with the
neighboring values within the projection.

Regarding a set J as a collection of blind spots, we
propose the self-supervision loss as the following:

Lself(G;Y ) =
∑
J∈J

EY ‖G(fJ(y))J − yJ‖`2 , (5)

which is the empirical expectation of the self-similarity over
the LDCT projection views y in the training set Y .

C. Image Reconstruction
With the denoising network G, the estimated projection

data ŷ can be written as:

ŷ = G(y), (6)

where y is the measured projection data. Using (2), the
estimated line integral can be written as:

p̂i = − ln

(
ŷi
N0i

)
, (7)

from which we can collect the estimated projection views.
Finally, we can estimate 3D object û by solving

p̂ = Aû, (8)

where A and p̂ are the system matrix and the collection
of estimated line integrals p̂i to reconstruct u. For the single
circular CBCT scan, we can reconstruct û from the estimated
projections with the standard filtered backprojection such as
FDK algorithm [5].

D. Network Architecture
As the baseline of our network architecture, we adapt

a contemporary denoising network (DnCNN) which has
shown significant noise reduction performance [17]. From
the perspective of network architecture, DnCNN extends
VGG network [7] and learns residuals between the input
and target pairs. For our self-supervised learning framework,
we replace the simple convolution layers of DnCNN with
residual blocks, which have been used in training image
generative networks to transfer image style using a small
number of instances [18]–[20]. The denoising network is
fully convolutional and capable of handling full-size images
without pre- and post-processing.

III. EXPERIMENTS AND RESULTS

A. Data Acquisition

The experimental CBCT projection data of anthropomor-
phic phantom were acquired by using an Acuity system (Var-
ian Medical Systems). The number of projection views for a
full 360◦ rotation is 680 and the total time for the acquisition
about 1 min. The dimension of each acquired projection
image is 397×298 mm2, containing 1024×768 pixels.

During the projection data acquisition, the x-ray tube
current was set at 80 mA, and the duration of the x-ray
pulse at each projection view was 10 ms. The tube voltage
was set to 125 kVp. The projection data were acquired in
full-fan mode in a single circular scan with a bowtie filter.
The distances of source-to-axis and source-to-detector were
100 cm and 150 cm. respectively.

B. Low-Dose Projection Simulation

In order to evaluate our self-supervised denoising ap-
proach, we generated various low-dose projections. Using
Poisson distribution in (2), we simulated 5%, 10%, 20%,
and 40% doses of the acquired x-ray projections. With the
projections of each simulated low-dose scan, we trained the
denoising network under self-supervision as described in the
previous section. After training, the same low-dose projection
views, which were used during the training process, were fed
into the learned network for prediction. Note that the scenario
is equivalent to one low-dose CBCT study of a patient being
available for both training and prediction.

C. Model Implementation

We implemented the denoising network in PyTorch run-
ning on NVIDIA TITAN Xp GPUs. The neural networks
were initialized with normal distribution and trained by
Adam optimizer with 0.5 of momentum during 100 epochs.
The learning rate was set to 2×10−4 and linearly decayed
to zero. The batch size was set to 8 for training and 1 for
inference. For training and inference, the network used full-
size 1024×768 projections for end-to-end processing.

D. Image Reconstruction

Since the projection views were acquired by a single
circular CBCT scan, we used FDK algorithm to produce 3D
volumes for both simulated low-dose and denoised projec-
tions. The dimension of CBCT volume was 512×512×256
voxels. The FOV of CBCT images was 256 mm with the
pixel size of 0.5 mm. The CBCT images were reconstructed
in 1.5 mm slice thickness and 1 mm slice interval.

E. Qualitative and Quantitative Analysis

After training, the simulated low-dose projections were
again fed into the denoising network for inference. The noisy
input projections and the corresponding denoised projections
are shown in Figures 1 and 2, respectively. We also show
the reconstructed CBCT images with the conventional FDK
algorithm in Figures 3 and 4, respectively.
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(a) 5% dose (b) 10% dose (c) 20% dose (d) 40% dose

Fig. 1. Simulated low-dose projection views. Each projection view was normalized by the maximum incident photon number. Display window is [0, 0.1]

(a) 5% dose (b) 10% dose (c) 20% dose (d) 40% dose

Fig. 2. Denoised low-dose projection views from our self-supervised learning model. Each projection view was normalized by the maximum incident
photon number. Display window is [0, 0.1].

(a) 5% dose (b) 10% dose (c) 20% dose (d) 40% dose

Fig. 3. Reconstructed CBCT images from simulated low-dose projections. Display window is [-500, 900] HU.

(a) 5% dose (b) 10% dose (c) 20% dose (d) 40% dose

Fig. 4. Reconstructed CBCT images from denoised low-dose projections. Display window is [-500, 900] HU.
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5% dose 10% dose 20% dose 40% dose

Noisy inputs 27.1±1.4 29.6±1.5 34.1±1.3 37.9±1.3
Denoised results 31.7±3.2 32.3±3.5 35.9±2.9 35.9±3.5

TABLE I
PSNR (MEAN±STD) OF SIMULATED AND DENOISED LOW-DOSE

PROJECTIONS.

5% dose 10% dose 20% dose 40% dose

Noisy inputs .663±.048 .753±.040 .845±.028 .924±.015
Denoised results .888±.031 .909±.030 .932±.019 .944±.015

TABLE II
SSIM (MEAN±STD) OF SIMULATED AND DENOISED LOW-DOSE

PROJECTIONS.

For quantitative comparison between the simulated and
denoised low-dose projections, we calculated peak signal-
to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM) of the simulated and denoised projections with
respect to the acquired high-dose projections as reference.
The PSNR and SSIM averaged over 680 views are listed for
the simulated low-dose projections and the corresponding
denoised projections in Tables I and II, respectively.

For performance comparison in image domain, we also
measured PSNR and SSIM of the reconstructed images from
the simulated and denoised projection with respect to the
high-quality images reconstructed from the acquired high-
dose projections. The PSNR and SSIM averaged over 256
slices of each CBCT volume, which were reconstructed from
the simulated low-dose and denoised projections, are listed
in Tables III and IV, respectively.

IV. CONCLUSION

In this paper, we propose a self-supervised denoising
approach which learns noise pattern in projection views for
low-dose CBCT imaging. To capture the spatially varying
noise pattern of low-dose projections, we extend a contempo-
rary network to cover full-size CBCT projections. Through
phantom experiments with simulated low-dose projections,
we showed that the proposed self-supervised denoising ap-
proach can perform view-wise learning with the low-dose
projections alone.
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