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Abstract— Eye closure changes brain activity, so eye-blink
tracking of subjects undergoing resting-state functional
magnetic resonance imaging (fMRI) is relevant for identifying
when a subject blinks, falls asleep, or keeps their eyes closed.
Existing MRI eye-tracking solutions use commercially available
MR-compatible video cameras with tracking software that can
fail on low-quality videos. In this paper, we propose a two-stage
convolutional recurrent neural network to classify open and
closed eyes from frames of MRI eye-tracking videos under
variable camera conditions. The model extracts visual features
from each video frame using a convolutional neural network
based on the Inception-v3 model, then uses a long short-term
memory network to incorporate temporal information encoded
in the sequence of visual features over time. Our model is
implemented in Keras and demonstrated on a dataset of MRI
eye-tracking videos from the Human Connectome Project. We
manually labelled frames from the dataset for training and
evaluation. The network was able to classify eye-blink states
with a precision of 0.739 and recall of 0.835 on a previously
unseen holdout dataset under varying camera conditions, eye
position, and video quality.

Clinical relevance— Functional mapping studies in psychia-
try and neuro-development which rely on a resting state fMRI
protocol may yield divergent results depending on whether the
subject keeps their eyes closed or open or whether the subject
falls asleep. The clinical relevance of this work is to introduce
the eye state (closed or open) in brain imaging studies as a
prospective covariate, and as a feature that can potentially
control for sleep state as a confounding factor.

I. INTRODUCTION

Resting-state fMRI is a widely established imaging modal-
ity for inferring functional connectivity in the brain [1]. The
resting functional MRI (rfMRI) paradigm typically involves
the subject lying in the MRI (magnetic resonance imaging)
scanner with eyes open and fixated on a dark screen with a
cross-hair. The entire acquisition lasts anywhere from 5 to 15
minutes, often involving up to four scanning sessions. The
longer sequences are designed for improving the signal to
noise ratio, but may introduce subject motion because of the
difficulty to stay still for a long time. Additionally, younger
subjects (children) or elderly subjects may have difficulty
keeping their eyes open and may drift in and out of sleep.
This can potentially introduce variability in the scanning
experiment. Also, studies that focus on sleep deprivation may
make the subjects susceptible to falling asleep in the scanner.
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The state of the art in determining the sleep state or the awake
state of the subject still involves manual monitoring of the
subject by means of a video camera that captures a video of
the eye and saves it along with the scan.

There have only been a few attempts to tackle eye videos
originating from MRI scanner mounted cameras. Although
there are various commercially available eye tracking solu-
tions for such cameras, they usually solve a limited set of
problems. Such methods for MR scan eye monitoring are
typically integrated with the camera and annotate the pupil
and track the movement. Such pupil-tracking solutions can
fail on low-quality videos. These solutions are proprietary
and it’s often difficult to combine eye tracking results from
several scanners or multiple sites.

Most existing methods attempting to capture the state
of the eyes from MR scanner have made the use of the
fMRI scan itself instead of depending on the acquired eye
video [2], [3]. Methods including both classical machine
learning approaches and deep learning based approaches
that have directly used MR eye videos have largely focused
on a frame-by-frame training of the static images [4]. For
example, the approach in Yiu et al. [4] has focused on pupil
segmentation and gaze estimation, which can be effectively
solved on a frame-by-frame basis using a fully convolutional
neural network.

The problem of eye-blink tracking in MRI is further con-
founded by the field of view (FOV), the angle of the mount,
partial obstruction of the eye due to the scanner coil, as well
as reduced illumination and ambient lighting in the MRI
scanner bore. Figure 1 shows four frames from four different
MR scanner mounted videos from the Human Connectome
Project data [5]. It is observed that all videos exhibit different
FOVs, show a large variation in the background illumination,
and some demonstrate occlusion of the eye.

In this paper, we propose a novel application of a com-
bined approach of using a convolutional neural network
(CNN) for eye feature extraction followed by a long short-
term memory network (LSTM) to model the temporal evo-
lution of the eye blinking from MR scanner mounted videos.
To our knowledge, this is the first time that a recurrent neural
network approach, and the LSTM in particular, has been ap-
plied to this specific problem. We applied this algorithm to a
dataset of MR eye videos collected across different scanners
and different sites. The output of the model classifies each
frame of the eye video with the label “eye open” or “eye
closed”.

The contributions of this paper are as follows, i) applica-
tion for the first time of a two-stage network combining eye
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Fig. 1. Four static image frames of eye videos from different MR scanner
mounted cameras across different sites.

features from a CNN and their dynamic state modelled by
an LSTM for MR scanner mounted videos, ii) creation of a
manually labeled dataset consisting of over 37K eye frames
for training and testing, and iii) experimental evaluation of
model parameters such as LSTM cell units and layers on
a validation dataset, then evaluation on a holdout dataset
yielding precision of 0.739, recall of 0.835, and 98.5% accu-
racy on videos from unknown camera models and settings.
Experimental results show that the model can detect eye
states while handling large differences in visual quality and
eye position.

II. DATA

The dataset consists of 30 MR scanner mounted eye videos
from 30 distinct human subjects that underwent scanning
using the Human Connectome Project protocols [5]. Each
video represents a single fMRI scanning session at a site
which varied across the United States. All videos consist
of the subject blinking normally, with their eyes open most
of the time. However, the blink rate varies widely between
subjects. Each video is 6 minutes 30 seconds, 30 frames per
second, and a resolution that varies across videos. The video
camera model and settings are unknown. The aspect ratios
of the videos are all close to 1:1, with side lengths between
500 and 800 pixels. All videos were converted to 299x299
pixels, with one grayscale color channel. Since some of the
eyes are on the border of the frame, the images were resized
to the new resolution without cropping, which introduces a
slight stretching effect in videos with a non-square aspect
ratio.

The dataset was split into a training set, validation set,
and holdout set with a 60%, 20%, 20% ratio, yielding 18,
6, and 6 videos respectively. To eliminate bias, each labelled
video is in exactly one of these three sets. We labelled the
first 1100 frames of each video in the training set, and the
first 1500 frames of each video in the validation and holdout
sets. This corresponds to roughly 35 seconds of each video,
thus yielding a labelled dataset of over 37K frames.

Since the dataset originally consisted of unlabelled videos,
we labelled each frame in the training set with a ground truth
value for the eye state. We implemented a Python program
which allowed us to label each frame in a video, and store
labelled frames in order. For our model to be maximally
useful, we decided that it would only distinguish between the
binary states of “eye open” and “eye closed”. However, an
eyelid can be in any position from fully open to fully closed,
so we needed to decide a cutoff for an eye to be considered
closed by our model. The most obvious choice is to label
a frame as “eye closed” only when the eyelid completely
covers the eye. However, this cutoff choice would result in
frames with a very small amount of the eye visible being
labelled as “eye open”, and some blink events would not be
labelled at all, since not every blink contains a frame with
the eye fully closed. In this work, we define the ”eye closed”
class as any frame with approximately 10% or less of the iris
being visible. This cutoff is roughly equivalent to the upper
eyelashes beginning to overlap with the bottom eyelid. Of
the 37800 manually labelled frames, 96.28% are in the ”eye
open” class.

III. TWO-STAGE NETWORK FOR EYE-BLINK DETECTION

Our model consists of a convolutional neural network
followed by a unidirectional stacked long short-term memory
network (LSTM) and is schematized in Figure 2. Since the
eye location within frames varies between videos, and the
eye is partially occluded for a few videos, we omitted an
eye localizer and instead rely on the convolutional layer
to extract the relevant features that have a sub-encoding of
the eye-related features. The Inception-v3 CNN base model
has moderate translation invariance due to the presence of
maximum and average pooling operations, so we expected
the classifier to perform adequately without a localizer, even
though the eye position varies between videos. Table I
outlines the parameters for the complete model.

A. First stage – Convolutional neural network

We used the Inception-v3 architecture for the convolu-
tional neural network [6] with the Adam optimizer [7]. The
base CNN model was pretrained on the 2012 ImageNet
dataset [8]. These pretrained layers were frozen, and we used
a transfer learning approach by adding additional trainable

TABLE I
MODEL PARAMETERS.

Parameter Name Parameter
CNN Base Model Inception v3
CNN Pretraining Dataset ImageNet
CNN Loss function Categorical cross-entropy
CNN Regularization L2
CNN Output dimension 2048
CNN and LSTM Optimizer Adam
Number of Trainable CNN Weights 4196352
Number of LSTM units 128
Depth of Stacked LSTM 3
LSTM loss function Binary cross-entropy
Classification Threshold on Softmax 0.65
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Fig. 2. Schematic of the two-stage framework consisting of the CNN as a feature extractor and the LSTM as a sequence modeler for MR eye videos.

layers to the CNN for this eye-blink problem. After the 2048-
d output of the Inception-v3 model, we added a dropout
layer, then a 2048-d to 2048-d fully connected layer. A 2048-
d to 2-d fully connected layer was added to the end for CNN
training only. We used categorical cross-entropy as the loss
function, as given by:

L = −
M∑
c=1

bi,c log(pi,c), (1)

where bi,c is 1 if the ith observation belongs to class c, and
pi,c is the predicted probability of the ith observation for the
class c, and M = 2 is the number of classes.

B. Second stage – Long Short-Term Memory Network

Unlike previous approaches [4] that have used CNNs for
prediction of eye states, in this paper, we added a second
stage consisting of a recurrent neural network. The output of
the CNN consists of a 2048−dimensional feature vector for
each frame, which is a representation of the visual informa-
tion in a single frame which is relevant to the eye state. Each
CNN feature vector does not leverage the information stored
in the ordering of those frames over time, such as the fact that
each frame’s eye state is likely to be the same as neighboring
frames. We introduce temporal modelling of the state of
the frames in the video sequence to effectively help us to
classify eye-blinks with a Long Short-Term Memory network
(LSTM) [9], [10]. LSTMs avoid the long-term dependency
issue in traditional recurrent neural networks that make it
prohibitive to learn with increasing sequence lengths. Each
unit of the LSTM is a cell which manages its state. The
input to each LSTM cell is the feature vector produced
by the CNN, and the output is a 256 dimensional hidden
state vector. Each cell also inputs the hidden state from the

previous frame’s cell. We utilized a stacked LSTM with 3
layers, then added a time-distributed softmax layer with two
outputs, and finally a classification threshold which gives a
binary output for each frame.

C. Model Training and Output

We trained the final layer of the CNN on our training
data, treating each frame independently. The pretrained CNN
base layers were frozen during training. Next, we evaluated
each image in our training set with the CNN, yielding an
ordered sequence of 1100 feature vectors for each video. We
then trained the LSTM on these feature vector sequences,
with frame ordering maintained during LSTM training. We
used a validation set to tune the model hyperparameters, then
evaluated the model on a previously unseen holdout set.

The final output of the LSTM is a softmax value for each
class “eye closed” and “eye open” as floating-point values
that add to 1. We convert these softmax values to a binary
prediction with a classification threshold. We settled on a
classification threshold of 0.65 on the “eye closed” softmax
value for the model. We justify this choice in Section IV.

IV. RESULTS AND CONCLUSION

Table II outlines the experimental results on the validation
set, which was used for hyperparameter tuning. In the experi-
ments, we varied the LSTM inner cell dimension and stacked
LSTM depth. We also varied the classification threshold
from 0 to 1 in increments of 0.05 for each test. In each
row of Table II, we searched all thresholds from 0 to 1 in
increments of 0.05, and only report metrics for the threshold
corresponding to the largest F1-score.

When deciding on the best model from the table, we con-
sidered the value of the F1-score, along with the area under
the precision-recall curve. A larger F1-score corresponds to
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Fig. 3. An example sequence of eye frames with ground truth labels and the output of the LSTM softmax layer for the “eye closed” class. Only the
second image is manually labelled as having a ground truth of “eye closed”.

a better tradeoff between precision and recall. Based on
both these considerations, we decided the best performing
validation set model was the 128 unit LSTM with 3 stacked
layers with a threshold of 0.65 on the “eye closed” softmax
value. Table III outlines the experimental results for our fixed

TABLE II
PERFORMANCE METRICS ON THE VALIDATION DATASET.

LSTM Hyperparameters Precision Recall F1-score
32 units, 1 layer 0.853 0.922 0.887
64 units, 1 layer 0.834 0.938 0.883
128 units, 1 layer 0.836 0.931 0.881
32 units, 3 layers 0.746 0.690 0.717
64 units, 3 layers 0.791 0.899 0.841
128 units, 3 layers 0.829 0.939 0.881

final model on the previously unseen holdout set. Figure 3
shows an example sequence of frames along with the ground
truth labels and the model softmax value for the eye being
closed. Frames 1 and 3 are examples of model failure cases.

In this paper, we presented an application of a two-stage
network that concatenated a CNN feature extraction stage
and a dynamic sequence modeling LSTM stage to yield eye
state classification from MR scanner mounted videos. We
also created (to our knowledge) a large labelled dataset of
over 37K eye frames for training and testing.

The high accuracy for the holdout set but lower precision-
recall is due to the unbalanced dataset with many “eye open”
states correctly classified. Future work could test the model
on eye-blink detection benchmark datasets, such as HUST-
LEBW [11]. The LSTM in the two-stage network could
be replaced with a newer, attention-based model to yield
higher performance. In fMRI systems with eye cameras, our
model could be used for greater confidence in eye state
detection. For existing analyses of fMRI data, our model
could potentially allow the eye-blink state to be controlled
for as a confounding variable, whereas future studies could
use our model to explore whether eye-blink properties such
as frequency and duration are indicative of psychiatric dis-
orders.

TABLE III
PERFORMANCE METRICS ON THE HOLDOUT SET FOR THE FINAL MODEL.

Accuracy Precision Recall F1-score
Final Model 0.985 0.739 0.835 0.784
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