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Abstract— This paper presents a cumulative histogram filter-
ing (CHF) algorithm to filter impulsive artifacts within surface
electromyograhy (sEMG) signal for time-domain signal feature
extraction. The proposed CHF algorithm filters sEMG signals
by extracting a continuous subset of amplitude-sorted values
within a real-time window of measured samples using informa-
tion about the probabilistic distribution of sEMG amplitude.
For real-time deployment of the proposed CHF algorithm on
an embedded computing platform, we also present an effi-
cient, iterative implementation of the proposed algorithm. The
proposed CHF algorithm was evaluated on synthetic impulse
artifacts superimposed upon undisturbed sEMG recorded from
a subject with transtibial amputation. Results suggest that the
CHF algorithm effectively suppresses the simulated impulse
artifacts while preserving a minimum signal-to-noise ratio of
95% and an average Pearson correlation of 0.99 compared to
the undisturbed sEMG recordings.

I. INTRODUCTION

The study of surface electromyography (sEMG) over
the past couple of decades has enabled varied applications
of neural control in upper and lower extremity prosthetic
devices [1]. Due to the non-stationary and chaotic nature
of sEMG signals, numerous attempts have been made to
understand and interpret sEMG signals in meaningful, physi-
ological terms related to collective muscle unit action poten-
tials (MUAPs), muscle state, muscle force, muscle synergies,
and even the kinematics and kinetics of muscle [1]–[6].
Among these studies, early seminal results demonstrated the
optimality of root-mean-square (RMS) and mean-absolute-
value (MAV) processors for estimating muscle force output
[7]. As a result, RMS and MAV signal processors have been
extensively emphasized and utilized due to their practicality
and effectiveness, especially in direct model-based control
of prosthetic systems [8]–[12]. These same sEMG signal
features have also been quantitatively evaluated to be some
of the most meaningful features when estimating neural
activities [13], [14].

However, Windrich et al. highlighted the relatively greater
number of studies focused on neural control of upper limb
prostheses using sEMG signals compared to studies in-
volving lower-extremity (LE) prostheses [15]. Indeed, there
exist unique considerations for LE prostheses, including lim-
ited options for sEMG electrode interfacing and significant
dynamic pressure changes on the residual limb that can
cause structural deformation and electrode contact variation.
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In order to overcome these challenges, many studies have
presented solutions within various electrical and mechanical
engineering domains [16]–[19].

In the signal processing domain, one of the dominant chal-
lenges in LE prosthesis applications is mitigating sEMG im-
pulse artifacts produced during ambulatory activities. Specif-
ically, impulsive acceleration at heel-strike can generate
drastic pressure changes at the skin-electrode interface as
well as vibration in the mechanical connections of the sEMG
platform. While De Luca et al. set an effective standard
for filtering generic motion artifacts and baseline noise with
band-pass filtering, this standard does not consider and han-
dle impulse artifacts [20], [21]. Interestingly, a few bio-signal
denoising algorithms that suppress impulse artifacts have
been developed within the domain of ECG artifact filtering.
These algorithms, including Wavelet analysis, independent
component analysis, empirical mode decomposition, and
adaptive thresholding, are both insightful and easily applied.
Nonetheless, due to these algorithms having been developed
for filtering ECG signals, they are potentially unsuitable as
real-time impulse artifact filters since they require multiple
sEMG channels, demanding high computational costs, and
require thorough a-priori knowledge of artifact type [22],
[23].

Therefore, in this paper, we present an effective sEMG
signal processing method and algorithm for filtering impulse
artifacts in extracting time-domain sEMG signal features,
such as RMS or MAV. Based upon a probabilistic under-
standing of recorded sEMG signals and impulse artifact
noise, the proposed algorithm leverages real-time cumulative
histogram filtering with minimal computational demands.
Individual performances of the proposed filtering methods
are evaluated on both synthetic sEMG data and real sEMG
data collected during use of a transtibial (TT) prosthestic
device.

The paper is organized as follows: Section II explains
sEMG signal models with impulse artifact models. Section
III describes the detailed algorithm for cumulative histogram
filtering. Section IV demonstrates and evaluates the proposed
filtering algorithm. Finally, Section V presents the paper’s
discussion and conclusions.

II. BACKGROUND

A. Probabilistic Model of sEMG Signals

Understanding the nature of sEMG signals is critical to
utilizing them as control inputs. Though sEMG signals are
naturally non-stationary and stochastic, there have still been
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several attempts made to understand and model their behav-
ior [7], [14], [24], [25]. In the course of finding an optimal
estimation of instantaneous sEMG amplitude, E. A. Clancy
and N. Hogan determined that the amplitude distribution of
a band-passed sEMG signal could be described as between
those of Gaussian and Laplacian PDFs. Fig. 1, recreated
from [7], demonstrates this relationship. Correspondingly,
because the RMS of Gaussian PDFs is equivalent to their
maximum likelihood amplitude with optimal signal-to-noise
ratio (SNR), and because the MAV of Laplacian probability
density functions (PDFs) is equivalent to their maximum
likelihood amplitude with optimal SNR, the researchers
determined that both RMS and MAV could be effectively
utilized to estimate the signal power of band-passed sEMG.

Fig. 1. Normalized experimental probability density estimates of triceps
muscle contraction up to 50% maximum voluntary contraction, conducted
as experiment II in [7]. Recreated from [7] with permission ©2021 IEEE.

B. Real-time sEMG Feature Extraction

Real-time feature extraction from sEMG follows a typical
procedure shared among many related studies [1], [20]. Fig.
2 demonstrates a simplified generic sEMG signal processing
pipeline. First, raw sEMG signals are required to be sampled
with a frequency of at least 1 kHz to effectively capture the
entire signal’s power spectrum. Then, sampled raw sEMG
signals are processed with a band-pass filter to remove
motion artifacts and power-line noise [20], [21]. A moving
short-time window with a duration between 100 and 500
milliseconds can then be applied to extract a signal feature at
each time step. In cases where normalization of the extracted
signal features is required, signal features are divided by
the maximum amplitude of those measured at maximum
voluntary contraction (MVC). The normalized MAV or RMS
features are often utilized as estimates of %MVC to provide a
muscle activation ratio (α) for real-time control applications
[8]–[12].

Feature Extraction
e.g) MAV or RMS

Band-Pass
Filtering

sEMG
Raw Signal

Short-Time
Moving Windowing

Fig. 2. Generic sEMG signal processing pipeline

C. Modeling Impulse Artifacts

Theoretically, the ideal delta function has unity frequency
response along the entire frequency domain, a characteristic
that renders band-pass filtering ineffective. When processed
by the sEMG processing pipeline shown in Fig. 2, a dis-
tinct impulse artifact is produced. As a demonstration, we
modeled an impulse as a unipolar sinusoidal signal with unit
amplitude and 10 ms duration, as shown in Fig. 3. We then
processed the sEMG using the pipeline shown in Fig. 2.
The selected band-pass filter was designed as an FIR filter
with a pass-band between 20 and 340 Hz and a stop-band
attenuation of 80 dB. A short-time window with 200 ms
duration was used to extract MAV and RMS features.

(a) (b)
Fig. 3. Modeled impulse signal, its response after band-pass filtering, and
corresponding features extracted. The impulse signal is modeled with unit
amplitude and 10 ms duration. Peak of impulse onset occurs at 0 s. The
response shown is derived in a non-causal manner with zero phase and
group delay.

After band-pass filtering, an impulse artifact presented
itself in the form of a sinc signal with duration of around 60
milliseconds, approximately three times longer than that of
the original peak (when counting up to the third dominant
peak). MAV and RMS feature extraction processes on the
band-passed artifact signal generated flat output features with
amplitude around only 1% of the raw signal amplitude.
However, in a situation where the impulse artifact has an
order-of-magnitude larger amplitude than the original sEMG
signal, it can clearly be seen how the artifact can significantly
alter the results compared to processing the sEMG signal
alone.

III. METHODS

In this section, we present a cumulative histogram filtering
(CHF) algorithm for impulse artifact reduction.

A. Cumulative Histogram Filtering

Fig. 4 introduces the proposed CHF to the generic sEMG
processing pipeline from Fig. 2. Within the process demon-
strated by Fig. 4, band-passed sEMG signals are sampled
using a given time window for every computational time-step
in the same way as the generic filtering scheme. However,
the proposed CHF processes sEMG data in between the
short-time signal windowing and feature extraction steps.
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Fig. 4. Modified sEMG signal processing pipeline with the proposed CHF
filtering method.

Algorithm 1 describes the CHF process in detail. Fig. 5
visualizes Algorithm 1 in sequential order.

Algorithm 1: Cumulative Histogram Filtering
Data Input : Short-time windowed sEMG data X
Coefficients : Histogram lower bound hLB

Histogram upper bound hUB
Data Output : Filtered sEMG data Y

1 begin
2 XABS← abs(X);

3 H← cumulativeHistogram(XABS);
4 xLB← x ∈ XABS s.t. H[x] = hLB;
5 xUB← x ∈ XABS s.t. H[x] = hUB;

6 Y←{x ∈ XABS | xLB≤ x≤ xUB}
7 end

The CHF is conducted over all sampled sEMG signals
within the time window. First, samples are sorted by ampli-
tude to generate a cumulative histogram. Then, data samples
within a specified continuous range of the histogram are
utilized for subsequent feature extraction.

Given the example sEMG dataset shown in Fig. 5a, Fig.
5b shows its histogram and cumulative histogram and Fig. 5c
shows the filtered subset of the short-time windowed sEMG
samples to be used in feature extraction.

The proposed CHF method is only applicable for certain
types of time-domain sEMG signal features. The types of
sEMG features compatible with CHF include MAV, RMS,
variance (VAR), log-detector, temporal moment (TM), and v-
Order processors [26]. These signal features share a common
characteristic, namely that the extracted signal features are
correlated to overall signal power and energy of sampled
sEMG data without considering sEMG signal dynamics.
Because the CHF rearranges the signal with no regard
to sampling order, time-domain sEMG feature extraction
methods that depend on signal dynamics, such as Bayesian
filtering, are not compatible with the proposed method.

B. Implementation of the CHF

1) Basic Implementation: While Algorithm 1 demon-
strates the procedure of CHF in sequence, Algorithm 2
summarizes an intuitive implementation of the proposed CHF
algorithm, as direct implementation of Algorithm 1 in real-
time would inefficiently utilize memory space and processing
power.

Computation routines in Algorithm 1 (computing cumula-
tive histogram, finding lower and upper bound coefficients,
and conditional signal extractions) are implemented in Al-
gorithm 2 by sorting absolute sEMG data by amplitude

(a)

(b)

(c)
Fig. 5. Graphic demonstration of Algorithm 1 and Algorithm 2 with
filter coefficients hLB of 10% and hUB of 90%. (a) Example sEMG time
series highlighting the short-time windowed signal for feature extraction
(b) Histogram plot and cumulative histogram plot extracted from Fig. 5a.
The filter coefficients, hLB and hUB, are highlighted with corresponding
xLB of 4.4% and xUB of 56%. The distribution of relative amplitudes is
observed to be skewed right. (c) Sorted and unsorted sEMG data based on
Fig. 5a highlighting original data and filtered data with hLB, hUB, xLB,
xUB indicated.

Algorithm 2: Intuitive Implementation of CHF
Data Input : Short-time windowed sEMG data X
Coefficients : Histogram lower bound hLB

Histogram upper bound hUB
Data Output : Filtered sEMG data Y

1 begin
2 XABS = abs(X);
3 S← sort(XABS);

4 Y← S[hLB : hUB];
5 end

and indexing a sub-array. The computational complexity of
Algorithm 2 is bounded by the computational complexity
of the sorting algorithm. Thus, the minimum computational
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complexity of Algorithm 2 is O(n logn) with fast sorting
algorithms such as quick sort that make no assumptions on
the underlying data.

2) Real-time Iterative Implementation: The computational
complexity of Algorithm 2 can be significantly reduced and
optimized by implementing CHF in an iterative scheme.
Algorithm 3 provides an iterative CHF implementation.

Algorithm 3: Iterative Implementation of CHF
Update : Newly sampled sEMG data point xt
Data Buffer: XABS, S
Coefficients : Histogram lower bound hLB

Histogram upper bound hUB
Output : Filtered sEMG data Y

1 begin
2 Pop oldest indexed data xABS,1 from Queue XABS;
3 Remove xABS,1 from Vector S;

4 Push abs(xt) in Queue XABS ;
5 Insert abs(xt) in Vector S based on amplitude;

6 Y← S[hLB : hUB];
7 end

By inserting only newly sampled data into the running data
buffers XABS and S, the sorting operation from Algorithm 2
is no longer required. Algorithm 3 can be considered to be
a linked-list style data buffer update scheme.

With Algorithm 3, computational complexity can be re-
duced to O(n) due to only requiring linear array traver-
sals. This scheme can easily be implemented in real-time
on microcontrollers or microprocessors used with portable
mechatronics systems.

IV. EVALUATION
A. Subject Recruitment and Data Collection

A single subject (43 years old, female) with unilateral
transtibial amputation participated in data collection for
the evaluation of the proposed CHF method. The subject,
a recipient of the novel agonist-antagonist myoneural in-
terface(AMI) amputation surgery, possessed two dynamic
AMI pairs (Tibialis Anterior (TA) coupled with Lateral
Gastrocnemius (LG) and Tibialis Posterior (TP) coupled with
Peroneous Longus (PL)) within her residuum [9]. The subject
provided written informed consent through MIT COUHES
protocol #1812634918.

In the first experimental session, the subject was asked to
voluntarily rotate her phantom limb while seated. Raw sEMG
signals from TA and TP muscles were collected while the
subject wore her prescribed prosthetic socket and a liner.
A custom embedded sEMG acquisition system was utilized
along with flexible (sub-liner interface for prosthetic-SLIP)
electrodes designed for within-socket sEMG acquisition [16],
[27], [28]. Raw sEMG signals were processed with a digital
band-pass FIR filter with pass-band of 40 to 340 Hz and
stop-band attenuation of 80 dB. A short-time window with
duration of 200 ms was used for subsequent CHF processing.

Fig. 6 shows the collected reference data processed using the
generic technique illustrated in Fig. 2 to yield RMS and MAV
features. In a second experimental session, sEMG data were
acquired during ambulatory activity to evaluate the efficacy
of the proposed CHF scheme illustrated in Fig. 4.

Fig. 6. Reference sEMG data collected from TA and TP muscles during
voluntary rotational movement of the residual phantom limb. The plot
visualizes both RMS and MAV processing outputs.

For qualitative evaluation of the CHF algorithm in real
situation, sEMG data during ambulation were also collected
from the identical subject with identical sEMG measurement
setup [28]. With a purpose to evaluate an efficacy of CHF
algorithm, the flexible SLIP electrodes were placed without
conductive gel resulting the system more susceptible to
impulsive artifacts during gait.

B. Performance Analysis with Clean sEMG Signals
This subsection utilizes the sEMG data from the first

experimental session to quantitatively compare the output of
CHF to generic sEMG processing in the absence of impulse
artifacts. In general, higher similarity between results is more
desirable, implying that the proposed CHF does not suppress
or distort original information from the sEMG signals.

Using data shown in Fig. 6, we applied the proposed CHF
while sweeping filter coefficient hLB from 0% to 40% and
hUB from 60% to 100% with a step size of 2.5%, resulting in
289 sets of cutoff boundaries per channel and processor. We
processed sEMG data from the subject’s TA and TP muscle
channels with MAV and RMS processors, resulting in a total
of 1156 processed sEMG time series.

1) Pearson’s Correlation: We analyzed Pearson’s correla-
tion coefficients to quantify the correlation of the processed
sEMG data. Table I shows the result of the correlation
analysis.

All of the correlation coefficients from both TA and TP
muscles with RMS and MAV processors present mean values
greater than 0.99, implying that CHF processed data are
highly correlated with unfiltered sEMG data. Because the
data from the TP muscle with RMS processor show the
lowest minimum correlation values of 0.9837, individual
correlation coefficients of these data are partially presented
in Table II.
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TABLE I
CORRELATIONS OF CHF PROCESSED SEMG SIGNALS

Muscle Signal Feature Correlation Coefficients
Mean Variance Min

Tibialis RMS 0.9954 5.51e-6 0.9915
Anterior MAV 0.9983 1.22e-6 0.9959

Tibialis RMS 0.9925 2.44e-5 0.9837
Posterior MAV 0.9968 6.08e-6 0.9915

TABLE II
CORRELATIONS OF CHF PROCESSED SEMG SIGNALS:

INDIVIDUAL COEFFICIENTS - TP MUSCLE, RMS PROCESSOR

hLB \ hUB 100% 90% 80% 70% 60%

0% 1.0000 0.9965 0.9924 0.9881 0.9837
10% 1.0000 0.9965 0.9925 0.9881 0.9837
20% 1.0000 0.9965 0.9925 0.9883 0.9839
30% 1.0000 0.9967 0.9928 0.9887 0.9845
40% 0.9999 0.9969 0.9933 0.9894 0.9856

With a minimum observed Pearson’s correlation of 0.9837,
all of the CHF processed data show high correlation to their
original signals. Fig. 7 presents a qualitative comparison of
the CHF-processed RMS data from TA and TP muscles.

Fig. 7. Partial results from all 289 filtered sEMG series using swept
boundary coefficients hUB and hLB of CHF, processed from the original
reference sEMG of Fig. 6. Partial data from 9 to 16 seconds shown.

2) Signal-to-noise Ratio: Signal-to-ambient-Noise-Ratio
(SNR) of the CHF processed data are also compared with
the SNR of the original data. Ambient noise is defined as the
mean value of sEMG data collected and processed during the
initial 5 seconds of the trial when the subject was instructed
to rest, as shown in Fig. 6. SNR is subsequently defined
as the ratio between the maximum measured value and the
ambient noise. Fig. 8 shows the result of the SNR analysis.

While the correlational relationship between CHF and
SNR is shown to be non-linear, relative SNRs of the data
remain higher than 95% compared to the SNRs of unfiltered
data in all CHF processed data. Importantly, SNRs of the
CHF-processed sEMG data from the TP muscle increase with
decreasing hUB.

C. Artifact Suppression Performance Analysis

1) Synthetic Impulse Artifact Model: A synthetic sEMG
impulse was injected into the data collected from the first ses-
sion to quantitatively evaluate the CHF’s ability to suppress

(a) (b)
Fig. 8. Effect of filtering on SNR of reference sEMG data from Fig. 6
with swept filter coefficients. (a) Relative SNR of the filtered TA sEMG
data. Filtering preserves at least 95% relative SNR for both MAV and RMS
features. (b) Relative SNR of the filtered TP sEMG data. As opposed to the
TA muscle, filtering of the TP muscle data results in increased SNR.

artifacts. The impulse model from Section II was utilized
to synthesize the artifact-affected sEMG dataset. A unipolar
impulse with duration of 20 milliseconds and amplitude of
5 mV, approximately 25 times larger than the maximum of
band-passed sEMG data was used. A periodic impulse train
with impulses every 1 second was generated and added to
the raw sEMG data. Fig. 9 shows the synthesized reference
data and its simulated signal output with RMS and MAV
processors.

(a)

(b)
Fig. 9. Synthesized artifact-affected sEMG data. (a) Artifact-affected and
band-passed TA muscle sEMG. (b) Effect of impulse artifacts on output
RMS and MAV features. Partial data from 9 to 16 seconds are shown.

2) Artifact Suppression Ratio: Artifact suppression ratio
is defined as the average ratio of outputs between filtered
and non-filtered data sampled at the center of each artifact
impulse. The synthesized sEMG data with impulse artifacts
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were processed using the CHF filter and swept boundary
coefficients in a manner identical to the process of subsection
IV-B. Fig. 10 shows the result of the artifact suppression ratio
calculation.

(a) (b)
Fig. 10. Artifact suppression ratio analyses with swept hLB and hUB filter
coefficients. Artifact suppression ratio is largely correlated with hUB. (a)
Artifact suppression ratio of the TA. (b) Artifact suppression ratio of the
TP.

From the data, artifact suppression ratio is inversely corre-
lated with hUB. Fig. 11 visualizes the effect of varying hUB
on noise suppression.

Fig. 11. Synthesized sEMG data shown in Fig. 9 are processed with hLB
of 10% and hUB of 60%, 70%, 80%, and 90%. As hUB of CHF algorithm
decreases, the corresponding resultant noise from the simulated impulse
artifact decreases.

D. Case Study: Ambulation

This subsection presents results from the second experi-
mental session involving ambulatory activity. Fig. 12 shows
the sEMG data collected from the TA and TP muscles of
the subject’s residuum within her socket during ambulation.
The collected data are processed using CHF algorithm with
hLB of 10% and hUB of 60%, 70%, 80%, and 90%. The
comparisons of the data processed with and without CHF
algorithm were then analyzed.

In Fig. 12, impulse artifacts synchronized with ground
reaction force (GRF) peaks are clearly visible in the sEMG
data collected from both TA and TP muscles. The results
from non-CHF RMS processed sEMG data demonstrate
staircase-like plateaus in their output waveforms. With CHF,

Fig. 12. sEMG data collected during ambulation were processed using
CHF algorithm with hLB of 10% and hUB of 60%, 70%, 80%, and 90%
for RMS processing. Impulse artifacts are synchronized with ground reaction
force peaks, but suppressed in the resulting RMS signal features as hUB
decreased.

staircase-like plateaus are suppressed, yielding output wave-
forms which more qualitatively resemble natural activation
patterns. Though there are no ground truth reference labels
for sEMG data and impulse artifact sources within the given
dataset, we feel the CHF’s efficacy are compelling.

V. DISCUSSION

This paper developed a filtering technique capable of
robustly extracting time-domain features from sEMG signals
in the presence of undesired impulse artifact. The proposed
CHF method was shown to effectively filter out synthetic im-
pulse artifacts in a reference sEMG data set while preserving
the signals’ underlying information.

Intuitively, the CHF method exploits the different PDFs of
the sEMG signal and noise models as described in Section
II. Because impulse artifacts under the tested conditions
demonstrated a right-skewed PDF compared to the under-
lying sEMG’s PDF, the CHF algorithm effectively filters the
artifacts out by discriminating via signal amplitude. The CHF
method is able to leverage a limited range of information
from the middle portion of a time window’s cumulative
distribution, and as seen in Fig. 11, this omission of high-
amplitude samples enabled extraction of sEMG features
with comparable levels of SNR compared to an artifact-free
reference data set.

At the extreme limit, the CHF method becomes identical
to the median feature extraction method with hLB and hUB
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at 50%. Admittedly, the optimality of the median processor
as a muscle force estimator has not been compared to MAV
or RMS processors. However, due to the stochastic nature of
sEMG, features that utilize multiple samples when extracting
information from an sEMG signal may vary less compared
to the one produced by the median processor which depends
on a single median sample. As CHF-filtered MAV and RMS
features with reasonable hLB and hUB ranges demonstrated
high correlations to non-filtered MAV and RMS features, it
is suggested that the proposed CHF method does not disrupt
the optimal nature of the MAV and RMS features discussed
in Section II.

Though this preliminary study yielded promising results,
the proposed filtering method remains to be tested thoroughly
with more data collected under additional testing conditions.
Future work will investigate the formulation of a data-driven
optimization scheme to determine CHF coefficients hUB and
hLB based on an underlying sEMG reference data set. As it
is, the proposed CHF method is efficiently computed with
minimal latency from input to output, and the authors hope
that this work will assist research efforts toward real-time
control of robotic mechatronics using sEMG signals under
dynamic conditions.
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