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Abstract— With the rapid development of deep learning 

approaches, tremendous progress has been made in computer-

assisted analysis of minimally-invasive, videoscopic surgery. 

However, surgery through open incisions (“open surgery”), 

which constitutes a much larger portion of surgical procedures 

performed, is rarely investigated because of the difficulty in 

obtaining high-quality open surgical video footage. Automated 

detection of surgical instruments shows promise for evaluating 

surgical activities, and provides a foundation for quality/safety 

review, education, and identification of surgical performance. In 

this paper, we present results using YOLOv3 to successfully 

identify an electrocautery surgical instrument in a library of 

images derived from 22 open neck procedures (an 887-image 

training/validation set, and a 1149-image testing set) captured 

using a wearable surgical camera. We show that our method 

effectively detects the spatial bounds of the electrocautery pencil 

in still images and we further demonstrate the ability of our 

method to detect the location of this instrument in video footage. 

Our work serves as the first demonstration of open surgical 

instrument detection using first-person video footage from a 

wearable camera and sets the stage for further work in this field. 

 
Clinical Relevance— Detection of instrumentation in surgical 

video is the necessary first step towards automating surgical task 

identification and skills assessment, which will be useful for 

surgical quality improvement and training. 

I. INTRODUCTION 

A. Videography in Surgery 

The routine use of video in the operating room has 

introduced a paradigm shift in surgical quality improvement. 

Recordings from minimally-invasive, videoscopic procedures 

(e.g., laparoscopy, robotic surgery) have been used to identify 

surgical errors [1] and identified strong correlations between 

surgeon skill performance and patient outcomes [2]. 

Increasingly, deep learning is being used to automate these 

assessments [3]. Despite the promise of surgical video, this 

work has been almost exclusively limited to videoscopic 

procedures, leaving a gap in applications for procedures 

performed through open incisions (“open surgery”). The lag 

in progress for open surgery video analysis has been primarily 

due to limitations with recording these procedures, including 

poor video quality due to obstructions, excessive motion, light 

overexposure, and other limitations related to battery life and 

surgeon comfort [4][5]. These difficulties have until now 
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limited the translation of existing deep learning research on 

footage from videoscopic and microscope-mounted cameras 

[6][7][8] to video footage captured by wearable cameras. 

B. Cleopatra Surgical Camera 

To address the challenges in recording open surgery, we 

developed a novel video platform designed for open 

procedures: Clearer Operative Analysis and Tracking 

(“Cleopatra”). Cleopatra is a neck-worn camera that provides 

an inherently stable, first-person view of the operative field; 

this both avoids the instability and movement of head 

mounted cameras and the potential for obstruction suffered by 

overhead, boom- or light-mounted cameras. 

Our group has previously used Mask R-CNN to achieve the 

automated recognition and segmentation of the surgical 

wounds in videos of open procedures captured using 

Cleopatra [9]. 

C. Surgical Instrument 

Beyond the wound, the two other major elements of the 

surgical field are the surgeons’ hands and the surgical 

instruments. The detection of surgical instruments during a 

procedure is currently an area of interest for automating 

analysis of surgical activities and skills assessment [10]. As 

the next step towards tracking surgical activities during open 

procedures, we have focused on detection of the widely-used 

electrocautery pencil device (colloquially, the “bovie”, Figure 

1) in this work. Because in many open procedures, much of 

the cutting action is accomplished using this instrument, this 

is an ideal target for assessing surgical skills.  

D. YOLOv3 

In order to construct the object detection network and 

accomplish instrument detection at real-time speed, we 

utilized the real-time object detection method: “you only look 

once” (YOLOv3) described in [11]. Compared to other 

algorithms like faster R-CNN and RetinaNet, YOLO is faster 

and uses a single convolutional network to detect objects; 

these features allow it to be employed by small processors and 

thus are more applicable to wearable recording devices for 

real-time analysis. In this manuscript, we present our success 

using YOLOv3 to identify the electrocautery pencil 

instrument in video stills and video sequences from a variety 

of open surgical scenarios captured by a wearable camera. 
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II. METHODS 

A. Data Source 

Our data source was a library of 22 videos of open neck 
procedures captured using Cleopatra, which records point-of-
view video footage of the surgical field at 1080p/30fps in h264 
format; these are subsequently converted to mp4 format for 
editing and exportation of images. These videos were collected 
under an IRB-approved quality improvement protocol and 
contained no identifiable images or metadata. A total of 430 
images were initially extracted from 12 of those videos to 
generate a still-image library for our training set (Data Set A); 
521 images were extracted from 4 separate videos for testing 
(videos A-D, in Figure 4). After initial testing we identified 
that most false positive identification errors were due to the 
presence of other linear, blue apparatuses in the surgical field, 
(e.g., elastic retraction hooks, vessel loops; Figure 2). Thus, to 
further improve our model and lower false positive and 
negative identification, we subsequently generated an 
additional 457 training images from our original 12 training 
videos; this set included 53 images that contained both the 
electrocautery pencil and other linear, blue items that were our 
most common “distractors” (Data Set B). We also added 
another 6 videos for testing (videos E-J in Figure 4) and 
extracted an additional 628 images from these 6 videos for a 
total final testing set of 1149 still images from 10 videos.  

B. Video Markup 

The focus of this experiment is the automatic recognition 
of the blue, insulated tip of the electrocautery pencil. A 
practicing surgeon identified this instrument in every image 
and Labellmg (discussed in [12]) was used to draw a bounding 
box and export the annotated images in YOLO format 
containing the four (x,y) coordinates that defined the bounding 
box; these data were used to train the network.  

C. Network Training 

 Each training involved forty-thousand iterations with 100 

training steps per epoch (batch size = 64, learning rate = 

0.001). Training was repeated after doubling the 

training/validation set and adding distractor images. 

D. Network Testing 

 Both networks, Data Set A and Data Set B, were tested on 

a set of 1149 still images derived from 10 videos from 

separate procedures, none of which were used for training or 

validation. We then also tested our network on ten video clips 

(nine 24-minute videos and one 12-minute video) to examine 

performance on video as opposed to still images, and 

quantitatively analyzed these results. 

E. Outcome Measures 

 Our primary outcome measures for model performance on 

images and video were 1) true positive – recognition of the 

instrument when in frame; 2) false positive – recognition of 

non-instrument as instrument; 3) false negatives – failure to 

recognize the instrument when in frame; and 4) true negative 

– no instrument detected when no instrument was visible in 

the frame. F-1 score of both rounds of testing was then 

calculated from these data. 

III. RESULTS 

A. Instrument Recognition 

 Our model recognized the electrocautery pencil across 

multiple procedures in our testing images and videos. Figure 

1 shows the bounding box found by our model in an example 

image. Note that the number near the bounding box represents 

the detection probability (i.e. the confidence level of the 

bounding box). 

 

B. Model Performance 

 The model performed well on the bounding box detection 

task, with a final F-1 score of 0.906 for Data Set B (Table 1) 

after the addition of more training images, including those of 

blue distractors. Despite this, and likely because of the lower 

detection probability threshold, false positives remained high 

at 10%; this was often realized as recognition of a blue vessel 

loop or elastic retractor as a secondary electrocautery pencil 

rather than complete non-recognition of the actual 

electrocautery pencil when it was in frame (Figure 2). 

 

 TABLE 1. Comparative performance of two YOLOv3 

networks on the same testing set of 1149 surgical images 

C. Errors in Instrument Detection 

 On visual inspection of images with misidentification in 

our initial model, we identified that eccentric positioning of 

the electrocautery pencil was the major source of false 

negatives. False positives were due to the presence of other 

linear, blue “distractors” which look similar to the insulated 

tip of the electrocautery pencil. We tuned our model by 

enlarging our training set and adding training images that 

specifically include “distractors”, reducing the rate of false 

negatives upon retraining. Examples of a persistent false 

positive is shown in Figure 2. An example of our model being 

able to decrease the false positives after re-training with more 

“distractors” (Data Set B) is shown in Figure 3. 

 Data Set A 
Network 

(430 images) 

Data Set B 
Network 

(887 images) 

True Positive 801 882 

False Positive 162 113 

False Negative 103 71 

True Negative 83 83 

F-1 Score 0.8581 0.9055 

 
Figure 1 – Electrocautery pencil detected using YOLOv3 
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D. Application of Model to Video Sequences 

 As proof-of-concept, we also tested our Data Set B model 

on video clips and discovered that it performed well in 

detecting the instrument as it appeared in the surgical field 

and tracking it through the frame. We analyzed 228 total 

minutes of video footage across the 10 videos in the testing 

set. Of these, the electrocautery pencil was present in-frame 

for 141 minutes (64.1%). Of these 141 minutes, our model 

successfully detected the instrument for 132 minutes (98.6% 

true positive rate) and failed detection for 9 minutes (1.36% 

false negative rate). For 87 minutes, the instrument was not in 

frame, and of this time, our model accurately detected no 

instrument for over 85 minutes (92.4% true negative rate) and 

incorrectly detected a non-instrument as an instrument for 1.5 

minutes (7.6% false positive rate). The electrocautery pencil 

frequently moved in and out of the frame, so detections were 

scattered across the length of the video as shown in Figure 4 

and there were more true negatives than in the image sets. The 

model performed well and similarly on the initial four videos 

for our first testing (A-D; F-1=0.933) and on the additional 6 

videos we added after retraining (E-J; F-1=0.917). 

 

 

IV. DISCUSSION 

A. Key Findings 

Our work is the first demonstration of automated 
recognition of a surgical instrument in point-of-view open 
surgical video footage captured by a wearable device. Our 
identification of the electrocautery pencil instrument using 
YOLOv3 was successful and our algorithm showed promise 
with a relatively small training set. This work paves the way 
for further research on open surgical video capture 
optimization. 

B. Future Directions 

The preliminary results presented in this manuscript serve 

as proof-of-concept for deep learning network applications to 

wearable surgical video footage. YOLOv3 provided 

reasonable performance, but better results might be obtained 

with more recent algorithms such as YOLOv4 and v5, and 

real-time performance on a small device may require using 

YOLO-lite. To augment our model, we utilized visual review 

of false detection frames, identifying “distractors” that, when 

specifically introduced into a re-training set, reduced the false 

positive rate. However, we did not simply fit the model to a 

specific test set; rather we identified and corrected distractors 

that are common to all videos, as evidenced by the similar 

Data Set B model performance on the four videos used for 

initial testing (A-D) and the additional six testing videos (E-

J) added after retraining. 

This work paves the way towards two future goals: motion 

analysis and multi-item analysis. Motion analysis will allow 

us to track the movement of the instrument through the frame, 

which may correlate with surgical performance. For example, 

one of the features of a widely-used surgical skills metric is 

“time and motion” [13]; plots of instrument motion could be 

assessed for smoothness as a quantitative measure of this 

quality. The correlation between instrument motion and skill 

level has already been demonstrated in previous work using 

an electromagnetic sensor directly attached to a surgical 

instrument [14], and this same principle may be applied in a 

“no-touch” manner using video analysis. Our preliminary 

video results presented in Figure 4 demonstrate such 

instrument tracking to be feasible across long video segments. 

Our second goal is to achieve a simultaneous identification 

and tracking of the multiple instruments as well as anatomical 

features of the surgical field. While single-object detection is 

relatively straightforward, a more comprehensive analysis of 

multi-item activity (e.g., interaction of instruments and tissue, 

switching of instruments, and case phase identification) will 

require correspondingly more complex network training 

methods. We anticipate that we can apply the same training 

insights gleaned from this study to these more complex 

networks to improve our results. 

C. Impact on Current Medicine/Biology 

Identification of surgical instruments is necessary to 

develop computational methods for assessing surgical 

technical skill. This is the first demonstration of surgical 

instrument recognition in open surgical video footage from a 

wearable device. While this method is limited to the detection 

 
Figure 2 – False-positive detection of a blue vessel loop (left) and a 

blue elastic retaining hook (right) as the electrocautery pencil, in 
addition to the actual electrocautery pencil (top center). 

 
Figure 3 – Re-training the model with additional images that included 
“distractor” items like blue elastic resulted in decreased false-detection 

of these objects. Upper panel is still image from testing of Data Set A, 

and lower panel is testing results of same still image using the 

re-trained, Data Set B. 
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of one instrument, further development will allow us to 

expand to the detection of multiple instruments at a time. With 

the advancement of instrument tracking in open surgery, 

methods of assessing laparoscopic surgical skill via 

instrument movement can be adapted to more procedure 

types. This wearable videography method coupled with 

surgical instrument tracking expands the current scope of 

automated surgical skill assessment, leading to enhancements 

in training, credentialing, and remediation.  

V. CONCLUSION 

Our automatic recognition of an electrocautery instrument 

in images obtained from the “Cleopatra” wearable surgical 

camera during open neck procedures using YOLOv3 was 

successful. We identified images with an eccentric placement 

of the instrument and with other similar blue apparatuses as 

the primary sources of model errors on visual review, and 

refined our model to address this, ultimately achieving a low 

rate of false positive and negative errors. Our model was also 

qualitatively and quantitatively successful when applied to 

video clips. This work forms a foundation for automated 

assessment of surgical skills in open surgical procedures. 
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Figure 4 – Full sequences of the ten testing videos (initial 4 were A-D, second 6 were E-J). Colors indicate results of model testing, and duration of results 
are represented by width of colored segment on a time axis of 24 minutes. Video E was only 12 minutes long. Green = True Positive, Blue = True Negative, 

Red = False Positive, Yellow = False Negative 
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