
 

A Novel Lossless ECG Compression Algorithm for 

Active Implants*

Abstract—A low complexity lossless ECG compression 

algorithm for active implants is proposed in this paper. The 

algorithm is based on adaptive length encoding by combining 

linear prediction with delta encoding. The algorithm is tested on 

forty-eight segments of 30-min ECG signals obtained from 

MIT-BIH Arrhythmia Database. The results show that with the 

data segment length of 33 and the predictor order of 2, the 

average compression rate of the algorithm reaches 2.43 and 

there is no difference between the reconstructed signal and the 

original one. It implies that it can realize the lossless 

compression with a high compression ratio. Meanwhile, the low 

complexity makes this novel algorithm suitable for ECG 

monitoring applications of active implants. 
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I. INTRODUCTION  

In recent years, cardiovascular disease (CVD) has been 
one of the leading causes of death in the worldwide, 
accounting for about 31% of deaths[1]. Electrocardiogram 
(ECG) is very crucial in the diagnosis  of CVD [2] and sudden 
cardiac death. Holters have been widely accepted for 
continuous and dynamic monitoring of ECG and are very 
important for CVD diagnosis and prevention [3]. Although 
Holters can keep recording 24 to 48 hours (usually not 
exceeding 72 hours), it is still difficult to capture valid 
pathological information for certain patients. For example, 
only a small number of patients can record data during 
syncope period by using a 24-hour Holter and for the vast 
majority, no syncope occurred during the 24-48 hours of 
holters recording. It has been reported that 33% of patients 
with a history of Atrial Fluctuation were missed by a one-year, 
24-hour ECG monitoring per month [4]. Therefore, in order 
to obtain valid and sufficient diagnosis information about 
arrhythmia and unexplained syncope, it is necessary to keep 
cardiac monitoring half a year or even longer. 

Implantable cardiac monitors (ICM) were developed in 
the early 1990s for long-term ECG monitoring. [5] showed 
that 78% of the 218 events in 570 patients achieved ICM 
guided diagnosis within an average follow-up period of 10 

months. However, as we know, the implantable devices are 
small in size and low in computing capability and power 
consumption. The longest service life of the commercial ICM  
is three years. Thus, data compression algorithms with high 
compression ratio and low complexity are absolutely 
necessary for the long-term monitoring of ICM.  

At present, there are three types of compression methods: 
the first processes the signals in the time domain directly, such 
as neural network [6], or linear prediction [7]; the second in 
the transform domain, such as discrete cosine transform [8], 
or discrete wavelet packet transform [9]; the third adopts the 
dominant feature extraction, such as template matching [10]. 
The latter two methods usually have high compression ratios 
(CR), but they have high complexity and inevitably bring loss 
of information, which are not available for ICM application. 
The first method, in particular the linear prediction has 
relatively low complexity and usually is lossless, which are 
more suitable for ICM. Up to now, several algorithms based 
on linear prediction have been proposed. Delta encoding is 
used for a lossless ECG compression algorithm in [11]. A 
linear predictor and dynamic data packaging have been 
applied to wearable sensors [3].A lossless algorithm adopted 
delta predictor and Rice Golomb Coding in  [12]. However, 
for the limitation  of the ICM, more improvements are needed 
to obtain higher CR.   

 In this paper, we propose an improved ECG signal 
compression algorithm based on linear prediction and 
adaptive length encoding. The paper is organized as 
followings: the second section introduces the scheme and the 
implementation procedures of the lossless compression 
algorithm, the third section presents the results of the 
performance of the algorithm, and the conclusion is drawn in 
the fourth section.  

II. METHODS 

Generally speaking, the ECG signal of a cardiac cycle 

contains a QRS complex with sharp amplitude changes and 

other waveform segments with relatively slow changes such 

as P or T waves. For the latter segments, a delta encoding can 

eliminate effectively the redundancy. However, for the sharp 

QRS segments, the error signal after delta encoding is often 

large, resulting in low compression ratio. Actually in addition 

to the QRS segments, abnormal changes in ECG signal may 

also cause sharp amplitude changes. For this reason, 

additional predictors are used to reduce the prediction error 

of the segments with sharp changes, and obtain a higher 

compression ratio. 

The algorithm proposed in this paper consists of 

compression and reconstruction. As shown in Figure 1, the 
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compression part consists of four processing stages. The first 

is to transmit the real-time ECG data to the length detector, 

where the data are temporarily stored until it reaches the 

preset data segment length. The second stage is delta 

encoding and save the prediction error. In the third stage,  the 

threshold detector gets the prediction error and compares it 

with the threshold, based on which, the prediction error is 

selectively transmitted to the predictor to determine the final 

prediction error. In the last step, the adaptive coder constructs 

a compressed packet with a variable length. The typical 

structure of a compressed packet is shown in Figure 2.  

A. Length detection 

The length detector is to set up an ECG data buffer, where 
the data is transferred to the  delta coder when the length of 
the ECG data transmitted into it reaches the preset length N. 
The preset length N is set according to the sampling frequency 
of ECG signal and the number of bits of ADC. The large value 
of  N means the large memory occupation and the long delay. 
Too large value of it may lead to the device cannot work 
normally due to the limitation of power consumption and 
storage space of implanted devices and the requirements for 
real-time processing. Therefore, it is necessary to choose an 
appropriate value of N. 

B. Delta Encoding 

The baseline wander is a common background noise in 
ECG signal, and delta encoding can eliminate it [1]. The delta 
encoding functions are defined as followings: 

 𝑥̂(𝑛) = 𝑥(𝑛 − 1) (1) 

 𝑥∗(𝑛) = 𝑥(𝑛) − 𝑥̂(𝑛) (2) 

where 𝑥∗(𝑛) is the predictive error after delta encoding, 
which is used as a criterion to determine if the data need to 
transfer to the additional linear predictor to further improve 
the compression ratio.  

Figure 3 presents a segment of original ECG signal and its 
process result by the first-order linear predictor. It can be 

found that the prediction errors of the relatively slow varying 
waveform remain small, which indicates that the slow varying 
segment can be effectively predicted by the first-order linear 
predictor. On the contrary, the prediction errors of the 
waveform with sharp amplitude changes, such as QRS 
complex, are still large although they are obviously reduced 
compared with the original signal. It need to be further 
processed for a better performance of compression. 

 

Figure 3. Comparison between the original signal and the prediction error of 
the first-order linear predictor 

C. Linear Prediction 

The ECG data with 𝑥∗(𝑛)  above a threshold will be 
transferred to the linear predictor for further processing. The 
linear prediction functions  are defined as: 

 𝑥′(𝑛) = ∑ 𝜔(𝑖)𝑥(𝑛 − 𝑖)𝑘
𝑖=1  (3) 

Where x′(n) is the predictive value at time 𝑡𝑛, 𝑥(𝑛 − 𝑖) is  
the value of original ECG signal at time 𝑡𝑛−𝑖 and 𝑤𝑖  represent 
the  corresponding coefficient. The various values of order k 
of the linear predictor would influence the prediction effect, 
but they are also limited by the computational complexity. 
The output error e(n) of the linear predictor is defined as: 

 𝑒(𝑛) = 𝑥(𝑛) − ∑ 𝜔(𝑖)𝑥(𝑛 − 𝑖)𝑘
𝑖=1  (4) 

Fig 1. The block diagram of the ECG compression algorithm 

Fig 2. The typical structure of a compressed packet 
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D. Adaptive Length Encoding 

The adaptive length encoding is the last step of the 

algorithm. The Huffman coding and the arithmetic coding are 

the most commonly adopted in this stage [6]. Despite of the 

good coding performance, the complexity of the above 

methods is relatively high.  

A low complexity encoding method is proposed in this 

paper. First, it searches for the maximum value Max of the 

absolute values of the prediction errors, and calculates the 

minimum number of bits in accordance with equation (5): 

 2𝑀𝑖𝑛𝑏𝑖𝑡−1 ≥ 𝑀𝑎𝑥 (5) 

 𝑀𝑖𝑛𝑏𝑖𝑡 is the number of bits required to store the value 

of single error. Leading zeros are filled for an insufficient 

length. The first bit is used as the symbol bit. 

Then, the compressed package is constructed. The 

structure of a compressed package consists of four parts as 

shown in Fig.2. The first four bits store 𝑀𝑖𝑛𝑏𝑖𝑡  calculated 

above. The second is the binary function 𝐺𝐹  of threshold 

detection, which occupies one bit. The third is the sampling 

data Header of the original signal, which is stored with twelve 

bits. The fourth part is the prediction errors stored in sequence, 

each of which occupies  𝑀𝑖𝑛𝑏𝑖𝑡 bits. 

E. Signal restoration 

The decompression is performed in the reverse direction 

of the compression. Firstly, the number of bits L of the first 

data segment in the compressed packet is calculated. 

 𝐿 = (𝐺𝐹 + 1) × 12 + 𝑀𝑖𝑛𝑏𝑖𝑡 × (𝑁 − 𝐺𝐹 − 1) (6) 

L is the binary length of the first data segment in a 

compressed package, and N  is the preset length. The 

beginning of the second segment starts from L + 6 bits, and 

so on till the compressed packet is completely restored to 

multiple segments. 

Next, the segments get the Headers according to the value 

of GF, that is, the value is GF + 1. According to the value of 

Minbit  to get the error array, and finally through a delta 

inverse transform to get the original ECG data. 

Two main indexes are used to evaluate the performance 

of the ECG compression algorithm, i.e., CR and Percentage 

Root-Mean-Square Difference (PRD). CR can be calculated 

as (7) 

𝐶𝑅 =
𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒

𝐵𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒
 (7) 

The PRD represents the quality of the reconstructed 

signal. The PRD is defined as: 

 𝑃𝑅𝐷(%) = 100 × √
∑ (𝑋𝑠(𝑛)−𝑋𝑟(𝑛))

2𝑁−1
𝑛=0

∑ (𝑋𝑠(𝑛))𝑁−1
𝑛=0

2  (8) 

Where, 𝑋𝑠(𝑛)  is the original signal and 𝑋𝑟(𝑛)  is the 

reconstructed signal. CR is to evaluate the level of 

compression and PRD is to evaluate the information fidelity 

of the compression algorithm. 

III. RESULTS 

Forty-eight 30-minute ECG files obtained from MIT-BIH 
Arrhythmia Database are used to test the performance of the 
algorithm. A ECG file contains ECG data of two leads, each 
with sampling rate of 360 samples/sec. A sampling point of 
the ECG signal is represented by 12 bits. The relationship 
between data segment length and compression effect is  
estimated preliminarily to obtain the optimal data segment 
length N. According to the format of the data packet, the 
compressed data length of the slow varying segments is 
calculated as following: 

 𝐿𝑆 = 5 + 12 + (𝑁 − 1) ∗ 𝐵𝑖𝑡𝑚𝑖𝑛 (9) 

 The compressed data length of the segments with the sharp 
changes is calculated as: 

 𝐿𝑃 = 5 + 2 × 12 + (𝑁 − 2) ∗ 𝐵𝑖𝑡𝑚𝑖𝑛 (10) 

 It can be found that after delta encoding, the maximum 
absolute value of slow varying segments is generally ≤ 8, 
which can be expressed by a 3-bit binary number. The 
maximum absolute value of the data in sharp changing 
segments is generally not less than 64, which can be 
represented by a 7-bit binary number. Adding a sign bit, they 
can be represented by 4-bit and 8-bit binary numbers 
respectively. Usually, there are 1 or 2 sharp changing 
segments in a cardiac cycle. For the sampling rate of 360 
samples/sec, the data bits of a cardiac cycle after encoding can 
be set as: 

 𝐿 = LS × (
360

𝑁
− 1) + LP (11) 

 

Figure 4. CR in a cardiac cycle with the length of data segment change 

 Figure 4 shows how the CR values vary with the data 
segment lengths. It can be found that the maximum CR value 
is 2.52 when the data segment length is located between 
[33:35]. 
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 The previous study has proved that the linear predictors 
with an order more than two do not show significant 
improvement on the compression [3]. Therefore, we test the 
first-order, the second-order and the third-order linear 
predictors.  

 e(n) = x(n) − x(n − 1) (12) 

 e(n) = x(n) − 2x(n − 1) + x(n − 2) (13) 

 e(n) = x(n) − 3x(n − 1) + 3x(n − 2) − x(n − 3)(14) 

 As shown in Figure 5, when the order of the predictor 
equals to two, the CR is the largest, which indicates that the 
second-order linear predictor is the optimal. 

 

Figure 5. CR  obtained by  the predictor with different orders 

 The PRD of each data segment is 0.00%, which proves 
that the compression algorithm is lossless.  

TABLE I.  COMPARISON WITH THE EXISTING ALGORITHMS  

Method CR 

Linear Predictor/Huffman Coding[11] 1.92 

Linear Predictor/Dynamic Data Packaging[7] 2.28 

Delta Predictor/Rice Golomb Coding[12]  2.38 

This work 2.43 

 

We also compare the performance of the algorithm in this 
study, with other existing low complexity algorithms that can 
run on low-power and low-voltage devices and results are 
listed in Table I. The CR of this algorithm is higher than those 
of the others. The results imply that the proposed algorithm in 
this study can increase the CR further through the combination 
of delta encoding and linear prediction, effective design of 
adaptive length encoding with optimal parameters. 

 CONCLUSION 

 In this paper, we propose a novel lossless ECG 
compression algorithm with low power consumption and low 
complexity. It includes four steps: 1) length detection, 2) delta 
encoding, 3) linear prediction and 4) adaptive length encoding. 
The algorithm is tested on forty-eight segments of 30-min 
ECG signals obtained from  MIT-BIH Arrhythmia Database. 
The effect of the data segment length and the linear predictor 
order on CR is studied. The results show that the average CR 
reaches 2.43 and the PRD is as low as 0.00 when the optimal 
parameters are adopted, i.e., with the segment length of 33 and 
the predictor order of 2. It implies that the algorithm can 
realize lossless compression with a high compression ratio. 
Meanwhile, the low complexity makes it suitable for ECG 
monitoring of active implants. 
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