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Abstract— Automated nuclei segmentation from immunoflu-
orescence (IF) microscopic image is a crucial first step in digital
pathology. A lot of research has been devoted to develop novel
nuclei segmentation algorithms to give high performance on
good quality images. However, fewer methods were developed
for poor-quality images like out-of-focus (blurry) data. In this
work, we take a principled approach to study the performance
of nuclei segmentation algorithms on out-of-focus images for
different levels of blur. A deep learning encoder-decoder frame-
work with a novel Y forked decoder is proposed here. The
two fork ends are tied to segmentation and deblur output. The
addition of a separate deblurring task in the training paradigm
helps to regularize the network on blurry images. Our proposed
method accurately predicts the instance nuclei segmentation on
sharp as well as out-of-focus images. Additionally, predicted
deblurred image provides interpretable insights to experts.
Experimental analysis on the Human U2OS cells (out-of-focus)
dataset shows that our algorithm is robust and outperforms the
state-of-the-art methods.

I. INTRODUCTION & RELATED WORK

Automated nuclei segmentation in a microscopic image
has been established as a key first step in digital pathology
[1]. The challenge of nuclei segmentation in poor quality
microscopic images has not been well-addressed in literature
where more focus has been on differentiating touching cells
[2][3]. Out-of-focus and motion blur are the two most com-
mon microscopic imaging artifacts that can severely degrade
image quality. These can increase the chances of misinterpre-
tation of pathological microscopic images, thereby resulting
in misdiagnosis [4][5](Figure 1). Blur in microscopic images
is prevalent due to the staining process of biopsy slides
and image data acquisition. There are very few efforts in
literature to directly predict nuclei segmentation from blurry
microscopic images. This motivated us to develop a nuclei
segmentation algorithm that gives robust performance on
both sharp and out-of-focus images.

The study of out-of-focus images have been extensively
carried out in [6] [7] [8] [9] [10]. Here, Quality Control (QC)
was used to reject out-of-focus images which lead to either
rejection of the image with an acceptable blur or tedious
re-acquisition of the microscopic image.

A challenge of touching cell resolution in nuclei segmen-
tation for sharp images has been addressed in the following
works [12] [13] [14] [15] [16] [17] [18] [19] [20]. Traditional
methods are typically unsupervised and based on shape and
size constraints. Popular deep learning approaches like [3]
[21] model nuclei boundary along with nuclei and back-
ground. The CIA-Net [2] address the problem by having a

Authors from Rakuten Institute of Technology India, Rakuten Group, Inc.
*These authors (devraj.mandal; abhishek.vahadane@rakuten.com) have

contributed equally

Fig. 1. Example from the Human U2OS cells (out-of-focus) dataset [11]
showing the sharp version (1st col) and their out-of-focus images (2nd & 3rd
col) along-with their expected ground-truth (last col). The touching nuclei
become more difficult to distinguish in out-of-focus images (marked in red).

separate decoder for nuclei contour (boundary) segmentation.
Hover-Net [22] proposed three decoders to predict nuclear
pixel, horizontal and vertical map, and semantic nuclei
segmentation. However, in these approaches, segmentation
of blurry images is not addressed.

One of the trivial ways to address the blur is through
image restoration techniques [23] [24] [25] [26] [27] [28]
and then use the restored image for nuclei segmentation.
These approaches incur loss of information in the restoration
process which can further limit the nuclei segmentation
performance. An interesting approach is to directly predict
the nuclei segmentation from out-of-focus images. The De-
noiSeg [29] algorithm is one such work which performs
joint segmentation and restoration. DenoiSeg extends the
idea of CNN3 [3] to segment nuclei, boundary, background
separately and uses an additional channel (or the fourth
class) in the segmentation model to predict the deblurred
images. The network is jointly trained with two losses -
cross-entropy loss for the first three outputs (segmentation
task) and self-supervised loss for the fourth output (debluring
task). Our approach though motivated by DenoiSeg has
many significant differences and was found to outperform
DenoiSeg performance on the Human U2OS cells (out-of-
focus) dataset [11] by a wide margin. In this work, we have
made the following important contributions:

• A novel deep learning architecture with forked Y de-
coder. The fork end represent two outputs in the decoder
for segmentation and deblurring objectives.

• Propose a combined loss function by addition of seg-
mentation, deblurring, and regularization losses in su-
pervised setting.

• A novel post-processing scheme for resolving the touch-
ing nuclei.

• Extensive ablation studies to understand the effect of
proposed algorithm on real-world out-of-focus images
as well as on more closely packed (touching) nuclei.

• A QC module in the post-processing scheme for further
improvement in performance.
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Fig. 2. Block Diagram of Blur Robust Nuclei Segmentation Model

II. PROPOSED MODEL

The proposed flow diagram of Blur-Robust Nuclei Seg-
mentation (BNS) Model is shown in Figure 2. Given the
input blur or sharp image I , the encoder-decoder network
produces two outputs. The first output is three-channel
segmentation Inuc (nuclei, boundary, and background) and
the second output is deblurred (sharp) image Ideblur. The
total loss (Equation 1) used to train our encoder-decoder
network is a combination of losses for the nuclei segmen-
tation (Equation 2) and the debluring (Equation 3) task. We
hypothesize that the addition of deblurring loss as a separate
task should help to regularize the network and give a better
segmentation performance [30]. We use a combined mean
squared error (mse) (Lmse), L-1 loss (Ll1 ) for deblurring
task and cross-entropy (Lce) loss for nuclei segmentation
task. We use different noise models to synthesize realistic
blur images from their sharp counterparts and hence Ldeblur

(Equation 3) can be trained in a supervised capacity.

Ltotal = Lnuc + Ldeblur (1)
Lnuc = Lce(Inuc, Igt) (2)

Ldeblur = Lmse(Ideblur, Isharp) + Ll1(Ideblur, Isharp) (3)

We can further post-process the nuclei segmentation output
to resolve the touching nuclei whereas, the deblur output can
be used by the pathologist for gaining interpretable insights
in the results. The nuclei output Inuc is first processed to
resolve the touching cells by subtracting the boundary pix-
els from nuclei predictions. We next use marker-controlled
watershed algorithm for further processing. The markers are
obtained by computing local maxima of distance transform
of Inuc. We then remove the closely located markers by
using a threshold. The threshold can be set by studying
the minimum distance between the nuclei centers in the
training data. We locate the unresolved touching cells by
determining the nuclei predictions which are associated with
multiple markers. Finally, we replace the original instance
with the sub-segments (multiple nuclei) generated by running
the marker-controlled watershed algorithm.

Fig. 3. Block Diagram of our Post-Processing Scheme

Fig. 4. Visual Illustration of our Post-Processing Scheme

The main steps of our post-processing scheme is shown in
Figure 3 and visually illustrated in Figure 4. We show how
the unresolved touching cells (marked in yellow) get resolved
by taking into account the multiple markers generated from
the peaks in the distance map. This greatly enhances our
nuclei segmentation model performance.

III. EXPERIMENTAL RESULTS

A. Dataset and Network

In this work, we use the publicly available Human U2OS
cells (out-of-focus) dataset [11] made publicly available by
Broad Institute. The dataset consists of 32 image sets (z
stacks) with z = 16 being considered to be the optimal
focal plane that gives sharp (in-focus) images. Extra images
were also captured at 15 focal plane above and 16 below the
optimal plane. The out-of-focus (blur) and in-focus (sharp)
image sets are considered to be (z = 00 to z = 10 and
z = 24 to z = 33 plane) and (z = 11 to z = 23 plane)
respectively [7]. Each image is 696×520 pixels. The instance
nuclei in the images were manually annotated by an expert as
considered as ground-truth for our experiments. The train and
test set were from independent acquisition sites. We consider
10% of the training data to create the validation split. The
objective in our work is to build a robust model to perform
the segmentation task on both sharp as well as out-of-focus
images. We separately measure the performance on the out-
of-focus and sharp image sets using the F1-Score (between
nuclei prediction and ground-truth) and provides the nuclei
segmentation harmonic mean (NHM) to quantify the overall
performance. NHM is defined as the harmonic mean between
F1-scores for sharp and out-of-focus image sets. A higher
NHM indicates that the model is robust to both sharp and
out-of-focus images.

Our network is trained with image patch of 512×512 size.
The network architecture and parameters such as number of
convolution layers and filter were from the popular U-Net
framework [31]. Hence, the encoder is same as in the [31].
However, we introduce two outputs in the decoder, one for
the segmentation (output size 3× 512× 512) and second for
the deblur (output size 1 × 512 × 512). These outputs have
a separate preceding convolution layer of filter size 1 × 1
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TABLE I
PERFORMANCE EVALUATION OF OUR PROPOSED MODEL.

Model F1-Blur F1-Sharp NHM
U-Net (standard) .598 .923 .726

U-Net (aug) .815 .925 .867
BNS-1 (aug) .830 .926 .876
BNS-2 (aug) .832 .928 .877
BNS-3 (aug) .834 .925 .878
BNS-4 (aug) .845 .933 .887

BNS-4 + QC (aug) .846 .947 .894

(CL1×1). In the decoder, other convolution blocks prior to
CL1×1 were common for both the outputs (hence, the Y fork
decoder)). This is the proposed architecture for BNS-1. We
can have more variations of BNS-1 architectures. We change
BNS-1 by separating one more preceding convolution block
before CL1×1 to get BNS-2. Hence, BNS-2 have separate
last convolution block (64 filters) and CL1×1 that connects to
each respective output in the decoder. In the same way, BNS-
3 have last two convolution blocks (64 and 128 filters) and
CL1×1 separate to the each respective output in the decoder.
BNS-4 have last three convolution block (64, 128, and 256
filters) and CL1×1 separate for each output. All the filters
have size 3× 3 if not mentioned explicitly.

B. Results

We consider that out-of-focus data is not available at the
training stage since most of the images are acquired at sharp
focus. We chose popular U-Net architecture as encoder-
decoder as our baseline. The results have been provided in
Table I. All models have the same post-processing as BNS
for a fair comparison. We make the following important
observations from the results. First, we observe that when
the U-Net is trained without any augmentation examples
(standard), the performance on the out-of-focus image set
is significantly lower when compared with the sharp coun-
terparts. It implies that out-of-focus or blur artifact reduces
the performance. Next, we investigate the performance of U-
Net model when trained with synthetic out-of-focus images
generated by different noisy blur kernels (like Gaussian,
Poisson, etc.) [7]. We observed that the use of Poisson
blur and optical point spread function (psf) [7] gave the
highest performance on the real out-of-focus test set which
we reported here as U-Net (aug).

The performance of proposed model (BNS-4) uses the
Poisson & optical psf [7] as augmentation strategy and gave
a significant boost in performance over U-Net (aug) from
(0.815 → 0.845, 0.925 → 0.933 and 0.867 → 0.8887)
on the out-of-focus, sharp and NHM respectively. We also
show the performance of different variants of our BNS
model in Table I and observed that all variants show better
performance than U-Net (aug). Figure 5 shows a more
detailed comparison between U-Net (aug) and BNS-4 (aug)
to understand the segmentation performance on image sets
of different blur levels (z-stack). We also report the relative
gain in performance as = our−baseline

baseline ∗ 100 (in %), where
our and baseline are the NHM of the U-Net (aug) and
BNS-4 (aug) respectively. We observe more relative gain in
performance on the more blurry image sets (Figure 5). The

Fig. 5. Comparison of BNS-4 vs U-Net for different blur levels.

Fig. 6. Ablation studies of proposed BNS-4 model.

TABLE II
PERFORMANCE COMPARISON OF BNS-4 WITH DENOISEG [29].

Model F1-Blur F1-Sharp NHM
DenoiSeg .677 .869 .761

DenoiSeg* .722 .878 .793
BNS-4 (aug) .845 .933 .887

NHM performance of our model trained with real out-of-
focus images along-with their ground-truth is 0.930.

Finally, we compare the performance of BNS against
the state-of-the-art DenoiSeg algorithm [29] and report the
results in Table II. We observe that BNS-4 significantly
outperforms the DenoiSeg performance with a relative gain
of 14.2% in NHM performance. Our model has two different
paths for the two tasks which helps to regularize the network
in a more elegant fashion than the 4-channel output. In
addition, we also use a supervised deblur loss instead of self-
supervision loss as done in DenoiSeg. We also incorporated
our novel post-processing scheme in DenoiSeg (DenoiSeg*)
and observed further improvement in the performance. This
validates the importance of post-processing to resolve touch-
ing nuclei.

Finally, we perform ablation studies for our model and
report the results in Figure 6. The # indicates results without
post-processing scheme and ∗ indicates that the evaluation
has only been performed on difficult test images (with more
than 50% touching nuclei). We observe that the performance
without the post-processing scheme (#) degrades especially
for the blur image sets. The post-processing scheme seems
to degrade the performance slightly on the sharp image sets
that can be recovered back by training a quality control (QC)
module (Table I & Figure 6). The QC was trained to predict
a given image as sharp or blur that can be used as a control
parameter to determine whether to apply the post-processing
scheme or not. We have trained a simple AlexNet model
[32] with a two class classification objective (blur or sharp)
as the QC module. Finally, we also observe that segmenting
closely packed nuclei is harder as shown by the ∗ results.

The proposed model enhances the interpretability of the
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Fig. 7. Visual results showing the interpretablitiy component of our model
with the deblurred output clearly showing the different touching cells.

results. The predicted deblurred output of the network can
enrich the information present in the input out-of-focus
image. This surely helps the expert (pathologist) to interpret
and validate our results. We visually illustrate in Figure 7
and show (from left to right), the original input image, the
output of the U-Net (aug) and BNS-4 (aug) model along
with the deblurred output. We also display the improvement
in F1-Score for this example. We observe that the deblurred
output is easy to interpret. Specifically, it improves the
interpretation of closely packed nuclei which was virtually
indistinguishable in the original input image.

IV. CONCLUSION

In this work, we have developed a Blur-Robust Nuclei
Segmentation (BNS) model which gives significant perfor-
mance improvement while segmenting real-world out-of-
focus images against the current state-of-the-art. We observe
that standard models trained without access to real out-of-
focus images are unable to properly segment the nuclei in
blurry images. This performance drop is greatly mitigated
by our proposed model. In addition our model provides
interpretable insights into the results which is of significant
value to a pathologist. Extensive experiments with different
variants our network architecture & an additional QC module
shows the efficacy of our proposed method.
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