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Abstract— The mouse is a valuable animal model to address 

the neural mechanism of higher brain function and test the 

pharmacodynamics of new drugs. The development of novel 

behavioral analysis to detect subtleties of emotion is valuable for 

the evolution of neuroscience research and drug discovery. 3D 

pose estimation is expected to contribute significantly to them. 

Several methods for 3D pose estimation of the mouse using 

optical motion capture with markers and multiple cameras have 

been proposed, but these methods have problems such as 

preparing marker sets and the influence of the markers on 

mouse behavior. A low-cost and simple method for markerless 

3D pose estimation of the mouse using a single RGB-D (Depth) 

camera is proposed. As a result, the proposed method improved 

the accuracy of limbs tracking compared to existing limbs 

tracking methods. In addition, this method could track other 

body parts (nose, base of tail) and the center of gravity. 

 
Clinical Relevance— This study could contribute to the 

development of neuroscience research and drug discovery by 

clarifying the relationship between subtle changes in mouse 

behavior and emotional movements. 

I. INTRODUCTION 

 Behavioral analysis using the animal model is 
conventionally utilized in basic and applied researches, 
including drug discovery. In the conventional behavioral 
analysis, animal behaviors are recorded using the 2D camera 
and manually or automatically analyzed. In the manual 
methods by researchers, there are problems such as variation 
in results due to the subjective judgment criteria of the 
researchers and a great deal of labor and time required for 
analysis. Automatic analysis resolves these problems and 
gives consistent and objective results. For example, there is a 
study on detecting the scratching behavior of mice from videos 
taken from above [1]. This technique can detect quick 
scratching behaviors with a widely used camera, but it does 
not target other behaviors of the mouse. However, in most 
automatic analyses of whole-body motions of the mouse, 
motion tracking of animals is commonly used. So far, it is 
challenging to automatically define the detailed change of 
animal behaviors by using the movement of each body part. 

 The mouse is a commonly used animal model. Over its 
long history, many behavioral analyses have been developed, 
in which validity to study the physiology and disease as the 

human model is experimentally estimated.  Additionally, 
utilizing the mouse has many advantages in terms of genetic 
manipulations, reproducibility, and so on. Open field test is 
one of the simple behavioral tests to analyze motility function 
and emotional state, in which mice allows to explore a wide-
open arena. In this test, the trajectory of the mouse body and 
stereotyped behaviors are usually analyzed. Changes in gait 
patterns in response to emotional states have been studied in 
humans, although the neural mechanism is not understood. 
The mouse is useful for addressing the molecular and cellular 
mechanism regulating gait patterns depending on emotional 
state. However, an experimental technique to finely analyze 
the gate pattern has not been sufficiently developed.  

Recently, analyses of mouse gait patterns using multiple 
infrared cameras and markers have been proposed [2]. 
However, this system has some problems with the time and 
cost of preparation, as well as the markers may affect mouse 
behavior in open-field tests. In other studies on the automation 
of animal experiments using a single camera for open-field 
tests, there is a study that tracks three points: nose, the center 
of gravity, and base of tail from a video of the mouse taken 
from above [3], and a study that tracks footprints by measuring 
from under the floor [4,5]. However, nose and base of tail are 
observable from under the floor, and the center of gravity can 
also be determined by images from below.  

In recent years, image processing technologies based on 
deep learning have been attracting attention. There is a tool for 
tracking animal body parts using deep learning, DeepLabCut 
[6]. It proposed by Mathis et al. is an open-source animal pose 
estimation software for everyone to use 
(https://github.com/DeepLabCut/DeepLabCut), and this 
tracking tool is already used in many studies. Kinect has also 
made it easier to obtain 3D information, and many studies have 
been conducted to analyze animal behavior in 3D [7]. For 
example, there is a study that automatically analyzes the 
pecking and feeding behaviors of pigeons by estimating their 
posture based on RGB-D data acquired with Kinect, an RGB-
D camera [8]. An RGB-D camera is a depth-sensing device 
that works in conjunction with an RGB camera to obtain depth 
information for each pixel. The proposed method is combining 
RGB-D video images and body part tracking by using deep 
learning. As for the mouse, a system that can track their limbs 
in 3D using Kinect has been developed [9]. However, this 
method cannot track the nose or base of tail, and there is room 
for improvement in accuracy. 

In this study, we propose a simple and highly accurate 
method for estimating mouse posture with more measurement 
points, using RGB-D video images from below and body parts 
position estimation based on deep learning.  
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II. METHOD 

A. Recording of RGB-D Video Images 

We recorded video images from under a transparent 
acrylic plate using an RGB-D camera. The RGB-D camera 
used here was Azure Kinect DK developed by Microsoft [7], 
and dimensions, weight, and the settings for recording are 
shown in Table 1. As shown in Fig. 1, a picture of the 
environment for capturing RGB-D video images, the 
background color was uniformly green to avoid disturbing the 
body parts tracking using color information. The camera was 
placed at an angle of about 27 degrees to the acrylic plate, as 
shown in the overview of the environment for recording 
RGB-D video images in Fig. 2. This angle of the RGB-D 
camera was set to prevent getting inaccurate depth data 
caused by the reflection of the acrylic plate. In this experiment, 
two mice were recorded for 20 minutes each. The following 
shows the method of body parts tracking.  

 

Table 1. Specifications of Azure Kinect DK 

Dimensions 103×39×126 mm 

Weight 440 g 

Color Camera Resolution (H×V) 2048×1536 

Depth Camera Resolution (H×V) 640×576 

Frame rate 30 fps 

Color Camera Field-of-view (FOV) (H×V) 75×65 degree 

Color Camera Field-of-Interest (FOI) (H×V) 90×74.3 degree 

 

 

Figure 1. Picture of the environment for capturing RGB-D video images 

 

 

Figure 2. Overview of the environment for recording RGB-D video 
images 

B. Tracking of the Center of Gravity of the Mouse Area 

For the center of gravity of the mouse area, since there are 
no features in color or shape, we calculated its position from 
the area of the mouse extracted by image processing. It was 
tracked in the following procedure shown in Fig. 3. 

1. From the depth image, determine threshold values for 
the upper and lower limits of depth and create a mask 
image by binarizing the area satisfying the threshold 
values as the area where the mouse exists (Fig. 3 (a)). 

2. Take the image before the mouse is inserted as a 
background image. Then subtract the background 
image from the target image (Fig. 3 (b)). 

3. Create a mask image by calculating the logical 
conjunction (AND) of the binarized image by the 
depth and the binarized image by background 
subtraction (Fig. 3 (c)). 

4. Extract the contour with the largest area from the final 
mask image as the area where the mouse exists. Then 
calculate the center of gravity of the mouse area (Fig. 
3 (d)). 

C. Tracking of Limbs, Nose, and Base of Tail  

For the limbs, nose, and the base of the tail, we tracked 
them using deep learning because their colors and shapes are 
distinctive. DeepLabCut, a tracking tool that uses deep 
learning was used to track them [6]. It is possible to perform a 
highly accurate estimation with less training data by using 
transfer learning, a method in which a model that has already 
been trained in one area is used for other related tasks. In 
addition, DeepLabCut uses a structure called a residual 
network to achieve accurate position estimation of body parts 
with a deeper network [10]. DeepLabCut has several networks 
with different layer depths that have been pre-trained with over 
a million images in ImageNet. In this study, ResNet-50, a 
neural network with a depth of 50 layers and the structure of a 
residual network, was used. The following procedure was used 
to track the body parts using DeepLabCut, a tracking tool that 
uses deep learning. 

 

       

(a)                                                         (b) 

       

(c)                                                         (d) 

Figure 3. Tracking method of the center of gravity 
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Table 2. Training accuracy  

 Limbs Nose and base of tail 

Training data [pixels] 2.36  2.42  

Test data [pixels] 4.14  3.97  

Mean Absolute Error (MAE) with training data and test data 

 

1. Create training data (extract 1000 frames from a 20-
Minute video). 

2. Train the network.  

3. Estimate the position of the body parts using the 
network. 

The training was divided into two parts: the tracking of 
limbs and the tracking of nose and base of tail. The accuracy 
of the training results for limbs tracking and nose and base of 
tail tracking using DeepLabCut was evaluated. The error with 
each training data and test data was shown in Table 2. The 
errors with the training data were about 2.4 pixels, and the 
error with the test data was about 4.0 pixels. When the target 
body part position of the mouse was at the center of an acrylic 
plate with a distance of 360 mm from the camera, the error was 
about 0.8 mm to 1.5 mm. Considering that mouse has smaller 
forelimbs than hindlimbs, and the width of their forelimbs 
when they are on the ground is about 3 mm to 5 mm, learning 
was assumed to be sufficient.  

D. 3 Dimensionalization 

The position of the body parts on the video image was 
combined with the depth information obtained from the RGB-
D camera and converted to 3D by the inverse perspective 
transformation. The perspective transformation is represented 
by (1), and the inverse perspective transformation is 
represented by (2). 
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where (X, Y, Z) is a 3D coordinate in the world coordinate 
space, (u, v) is a projection point in the image plane in pixels. 
The first matrix on the right-hand side of (1) is called a matrix 
of intrinsic parameters of the camera. The matrix of intrinsic 
parameters contains a coordinate of the image center (𝑐𝑥, 𝑐𝑦) 

and the focal lengths expressed in pixel-related units (𝑓𝑥, 𝑓𝑦). 

The elements of the matrix of intrinsic parameters are 
calculated from camera’s FOV and color camera resolution. 
The joint rotation - translation matrix, the second matrix on 
the right-hand side of (1) is called a matrix of extrinsic 
parameters. 𝑟𝑖𝑗  is the element of the rotation matrix and 𝑡𝑖 is 

the element of the translation matrix [11]. After that, the 3D 
data of 7 points were denoised using a 3-frame moving 
average method with one previous frame and one next frame, 
and all frames were updated. If either of the following two 
conditions are met, the data for that body part is considered 
inaccurate and deleted. 

  

 

(a)  

 

 

(b)  

Figure 4. Results of the proposed method 

(a) shows the results of 3 Demensionalization of body parts tracking in 
mouse. (b) shows the color of the points corresponding to each body part of 
the mouse. 

 

A) The 3D data of the body part is outside of the range 

defined on the acrylic plate that would contain the body 

parts if they were tracked correctly.  
B) The likelihood of the body part position estimation by 

DeepLabCut was less than threshold. 

Then, the data is complemented from the 3D positions of the 
frames before and after the frame whose data was accurately 
obtained.  For frames with inaccurate data, the body parts are 
assumed to move linearly with constant velocity. 

III. RESULT 

The 3D pose estimation of the mouse was obtained by the 
proposed methods (Fig. 4(a)). Fig. 4(b) shows the color of the 
corresponding point to each body part. 100 frames were 
randomly extracted from each of the two 20-minute videos. 
One was used for training (Used), and the other was not used 
for training (Unused). The errors between the data and ground 
truth are shown in Table 3. The ground truth is the data 
obtained by manually marking the body parts' positions on a 
PC by a person who is used to analyzing mice. In the video 
not used for training, the tracking error of the body parts other 
than nose was about 2.4 mm for the body part with the largest 
error, but the nose had a larger tracking error of 4.08 mm. 

IV. DISCUSSION 

 As a discussion on the accuracy of tracking, compared to 
the limbs tracking error of 4.18 mm in the previous study [9], 
the limbs tracking error of the proposed method was 2.06 mm 
on average, which was reduced by about half. This tracking 
error was considered to include the human error of the 
manually tracked data used as the ground truth. Also, 
considering that the size of the mouse's front paw is about 4 
mm and the size of a mouse's hind paw is about 7 mm when 
grounded, the accuracy was sufficient for limbs tracking. The 
accuracy of nose tracking in videos not used for training was 
worse than in other body parts but slightly improved 
compared to the previous study. One of the reasons for lower  

Table 3. Tracking error (MAE) in distance at the center of the open 

field 
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 Limbs tracking Nose and base 

of tail tracking 

Body parts Right 

forelimb 

Left 

forelimb 

Right 

hindlimb 

Left 

hindlimb 

Nose Base 

of tail 

Video(Used) 

error [mm] 

1.42  1.29  1.27  1.24  1.45  1.42  

Video(Unused) 
error [mm] 

2.43  1.54  2.24  2.05  4.08  1.40  

Video (Used) is used for training, and Video (Unused) is not used for training. 

 

     

(a) Success                                         (b) Failure 

Figure 5. Success and failure frames for nose tracking 

The blue dots indicate where the nose was estimated and the yellow dots 
indicate where the base of tail was estimated. In (a), the nose was not occluded, 
thus nose tracking was successful. In (b), the nose was occluded by the mouse's 
own body, thus the fecal matter with similar color information to nose was 
recognized as nose. 

 

accuracy in the nose tracking in the video not used for training 
(Unused) was that the color information of the nose of the 
mouse in the video used for training (Used) and the color 
information of the mouse's fecal matter during recording in the 
video (Unused) was similar. Therefore, when the mouse's nose 
was occluded by the mouse's own body, a wall, or a prop the 
fecal matter is identified as the nose. It is possible to improve 
the tracking accuracy by re-labeling and re-learning the frames 
where the fecal matter is recognized as a nose or by 
supplementing the data of other frames when the distance from 
the center of gravity exceeds the threshold. Fig. 6 shows a 
frame in the video (Unused) where fecal matter was 
recognized as a nose. 

V. CONCLUSION 

In this study, we proposed a low-cost and simple method 

for markerless 3D pose estimation of the mouse with a single 

RGB-D camera. The proposed method used RGB-D video 

images from below and body parts tracking by deep learning. 

As a result, the accuracy of the proposed method was 

improved compared to previous studies. In addition, the 

proposed method can track not only 4 points of the limbs but 

also 3 points: nose, the center of gravity, and base of tail. 

However, there is still room for improvement in the accuracy 

of nose tracking. These results indicate that this method has 

the potential to contribute to the evolution of neuroscience 

research and drug discovery by detecting emotional 

movements from minute changes in mouse behavior. 

 

In future research, we will develop a more accurate and 

detailed method for analyzing mouse behavior and investigate 

changes in mouse behavior caused by emotional movements 

depending on the administration of anxiolytic or 

antidepressant drugs. 
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