
  

  

Abstract— Metal artifact reduction (MAR) is a challenge for 

commercial CT systems. The metal objects of high density 

adversely affect the measurement process and bring difficulties 

to image reconstruction. Compressed sensing (CS) 

reconstruction algorithms have been successfully applied in 

MAR. Ideally, the desired anatomical information can be 

restored from incomplete projection data. However, in most 

practical cases, these conventional CS algorithms may instead 

introduce severe secondary artifacts due to improper prior 

information. In this paper, we propose a customized total 

variation (CTV) method to reduce the metal artifacts based on 

the specific pattern of the artifacts. The gradient operator within 

the TV norm is redefined according to the distribution of both 

the metal objects and tissues for each MAR case. We also provide 

a weighting strategy to further protect the fine details. 

Experimental results show that the CTV method achieves better 

performances than those of the conventional methods. 

I. INTRODUCTION 

Metal implants in patients would cause severe imaging 
artifacts during CT scans due to the strong attenuation of metal 
material. Besides the X-rays passing through the metal 
implants, the remaining projection data might also be 
contaminated by beam hardening effect and photon scattering. 
Many studies have been devoted to metal artifact reduction 
(MAR). One simple and commonly adopted approach for 
MAR is to remove the unreliable projections during the image 
reconstruction [1]. However, additional effort should be made 
to solve the problem of incomplete data to avoid new artifacts.  

Compressed sensing (CS) based reconstruction algorithms 
achieve much better performance even with highly incomplete 
projection data [2]. CS theory recovers image signals by 
introducing a specific transformation from the image domain 
to a signal-sparse domain. Among them, the total variation 
(TV) minimization algorithm enjoys great fame and has been 
applied successively to many fields [3]. The work assumes that 
most anatomical structures in clinical images are piecewise 
constant and thereby most noise artifacts are reduced. 
However, it achieves limited success in the MAR problem. 
Unlike many other CT image artifacts, metal artifacts are 
highly inhomogeneous. Since the contaminated projection 
data is excluded during the image reconstruction process, the 
measurements of tissues along these projection lines are absent. 
As a result, the fine details tangent to these projections will not 
be fully recovered [4]. Moreover, secondary artifacts are 
introduced by iterative reconstruction algorithms. When an 
improper initial guess is adopted for the iterative algorithm, the 
errors in CT values will then leak to adjacent pixels during the 
projection and back-projection process [5]. Due to data 
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incompleteness, these errors may not be corrected and a series 
of intensity leakages will then accumulate to severe streak 
artifacts tangent to the removed projection lines. An example 
of the streak artifacts is given in Fig. 1(c). Such artifacts are 
insensitive to gradient operators along the streak’s direction, 
thereby conventional TV regularization turns out to be an 
inefficient way to reduce metal artifacts.  

Several modified TV regularizations have been proposed 
to fit different needs. Chen et al. developed an anisotropic TV 
norm for limited-angle CT [6]. Based on their observation, the 
direction of streak artifacts can be predicted according to the 
scan trajectory. Under this assumption, they designed an extra 
1D TV norm adapted to the scan trajectory. Besides, numerous 
weighting strategies have been introduced to improve the 
conventional TV algorithm [7] [8]. These methods make 
efforts in striking the balance between artifact reduction and 
detail preservation. 

To improve the algorithms further, we adjust the TV norm 
for the MAR problem. In the context of metal artifacts, the 
directions of the removed projection lines vary from pixel to 
pixel, which contributes to tricky star-shaped artifacts around 
the metal objects. However, since all the removed projection 
lines pass through the metal objects, the distribution of the 
streak artifacts is still predictable for each specific case. In this 
paper, we propose a customized TV (CTV) norm constrained 
iterative algorithm. To reduce the characteristic metal artifacts, 
we first construct a direction map to estimate the distribution 
of the potential artifacts. Then the CTV norm with pixel-
specific direction is determined according to the map. By 
exploiting the knowledge of metal objects and background 
images, we further apply a weighting strategy to preserve the 
fine details. In Section II, we introduce the implementation 
details of the CTV method. Experiments on different CT 
images are conducted in Section III. Finally, we draw the 
conclusion in Section IV. 

II. METHODS 

A. Optimization model of the CTV algorithm 

The conventional TV constrained CT image reconstruction 
problem can be described as:  

 min
𝑓

‖𝑓‖𝑇𝑉  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐴𝑓 = 𝑝 () 

where 𝐴 denotes the system matrix, 𝑓 is the image vector to be 
reconstructed, ‖𝑓‖𝑇𝑉 is the conventional TV norm of image 𝑓 
and 𝑝  is the adopted measured projection data. Other 
projections that are contaminated by the metal objects are 
discarded. The contaminated projection data can be recognized 
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by reprojecting the metal objects that are segmented from the 
uncorrected image. We rewrite (1) with CTV regularization 
into an unconstrained optimization form:  

 min
𝑓

𝜇

2
‖𝐴𝑓 − 𝑝‖2

2 + (1 − 𝜆)‖𝑓‖𝑇𝑉 + 𝜆 ‖𝑓‖𝑐𝑇𝑉   () 

where 𝜇  is the Lagrange multiplier, and 𝜆  is the variable 
weight that balances the two regularization terms. The CTV 
norm ‖𝑓‖𝑐𝑇𝑉 is defined as:  

 ‖𝑓‖𝑐𝑇𝑉 = ∑ ∑ 𝑊𝑛,𝑥,𝑦 ‖∇𝛼𝑛,𝑥,𝑦
𝑓(𝑥, 𝑦)‖

1
𝑛𝑥,𝑦  () 

𝑥 and 𝑦 are pixel indices and 𝑛 is the number of metal objects. 
𝑊𝑛,𝑥,𝑦  is the pixel-specific weight, and ∇𝑎𝑛,𝑥,𝑦

 is the local 

gradient operator along a specific direction 𝛼.  

B. Pixel-specific 1D TV norm 

Although the bright and dark streak artifacts with low 
frequency are visible to human beings, they may confuse the 
conventional TV algorithm. For example, regions within the 
streak artifacts are likely to meet the assumption of piecewise 
constant along the streak’s direction. Therefore, TV 
regularization along such direction contributes little to artifact 
reduction. On the other hand, the normal direction becomes the 
Achilles heel of streak artifacts. The 1D TV norm can be used 
to enforce homogeneity along any designated direction. By 
this means, it is rational to detect and remove the artifacts 
using 1D TV norm along the streak’s normal direction. Given 
that the metal artifacts appear to be metal-centered, the shapes 
of the artifacts are highly relevant to the geometry information 
of the metal objects. Thus, in the CTV algorithm, we first 
identify the metal objects using a threshold-based method. 
Then, for each separate metal object, a direction map is 
acquired to design a pixel-specific 1D TV norm. For pixel 
𝑓(𝑥, 𝑦), the removed projection line passes through both the 
pixel and the centroid of the metal can be denoted as: 

 𝑋𝑐𝑜𝑠𝜃 + 𝑌𝑠𝑖𝑛𝜃 = 𝑡 , 0 ≤ 𝜃 < 𝜋 ()  

where 𝜃 is the angle of the projection line. According to the 
above conclusions, 𝜃  reveals the direction of the potential 
streak artifacts around pixel 𝑓(𝑥, 𝑦). To enforce homogeneity 
along streak’s normal direction, the direction 𝛼 in formula (3) 
is obtained by:  

 𝛼 = {
𝜃 +

𝜋

2
, 0 ≤ 𝜃 <

𝜋

2

𝜃 −
𝜋

2
,

𝜋

2
≤ 𝜃 < 𝜋

 ()  

By traversing the whole image, we collect all the 𝛼 -
directions to construct the direction map and then determine 
the directions of the CTV norm. Fig. 1 gives an illustration of 
the CTV norm. The segmented metal objects are marked in red. 
Note that the direction map in Fig. 1(e) correctly describes the 
streaks’ normal directions shown in Fig. 1(d). Linear 
interpolation strategy is adopted to apply gradient operator 
along radial direction since CT images are defined in the 
Cartesian coordinate system.  

C. Weighting strategy 

Though the TV minimization algorithm receives 

widespread acceptance for its capability to reduce artifacts, it 

is also criticized for the undesired staircase effect which  

 

Figure 1.  Illustration of the CTV norm. (a) the ground truth, (b) the 

uncorrected image, (c) the linear interpolation MAR [7] pre-corrected 

image, (d) the residual image of the pre-corrected image from ground 

truth, (e) the direction map of the CTV norm, (f) the weighting map of 

the CTV norm. Red pixels stand for the inserted metal implants. 

 

severely blurs the images when inappropriate parameters are 

adopted. To deal with this problem, we proposed an adaptive 

weighting strategy for the CTV norm utilizing the information 

of both the metal objects and the background image. 

Based on the analysis above, the streak artifacts originate 

from the blurring of high-frequency details. Therefore, it is 

practical to predict the distribution of the streak artifacts before 

reconstruction. For example, severe artifacts are more likely to 

be observed within regions that contain rich structure 

information. These regions thereby require larger CTV 

parameters to reduce artifact. In this way, we reweight the 

CTV norm according to the intensity fluctuation along the 

removed projection line.  
To investigate the tissue information in the background 

image, we first applied conventional linear interpolation MAR 

(LI-MAR) [9] algorithm to obtain a pre-corrected image 𝑓 . 

After that, a profile 𝑝𝑟𝑥,𝑦 (s) is drawn for each pixel 𝑓(𝑥, 𝑦) 

along the projection line defined in formula (4), denoted as: 

 𝑝𝑟𝑥,𝑦,𝑛(𝑠) = 𝑓(𝑥 + 𝑠𝑐𝑜𝑠𝜃, 𝑦 + 𝑠𝑠𝑖𝑛𝜃) ()  

To assess the fluctuation of the profile, we further calculate the 

absolute value of the normalized profile: 

 𝑝𝑟̂𝑥,𝑦,𝑛(𝑠) = |𝑝𝑟𝑥,𝑦,𝑛(𝑠) − 𝑝𝑟̅̅ 𝑥̅,𝑦,𝑛|
 
 ()  
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where 𝑝𝑟̅̅ 𝑥̅,𝑦 is the mean value of the profile. The pixel-specific 

weight in formula (3) is then given by: 

 𝑊𝑛,𝑥,𝑦 = ∑ 𝑝𝑟̂𝑥,𝑦,𝑛(𝑠)𝐾(𝑠)𝑠  ()  

where 𝐾(𝑠) is a 1-D Gaussian kernel to introduce a distance 

weight. The weighting map in Fig. 1(f) shows its ability to 

predict the distribution of streak artifacts before reconstruction.  

III. RESULTS 

The proposed CTV algorithm is evaluated on simulated 
images. We followed Zhang’s procedure [10] to simulate 
metal-induced projection data and used real clinical images 
from “the 2016 Low-dose CT Grand Challenge” dataset [11]. 
The size of the reconstructed CT image is 512×512. A fan-
beam geometry CT scan is simulated and 512 projection views 
are sampled evenly from 0° to 360° with a flat detector of 768 
bins. The metal implants are assumed to be titanium to 
simulate the beam-hardening effect. As for the Poisson noise, 
we assumed that the X-ray has 2 × 107  photons. The 
Institution’s Ethical Review Board approved all experimental 
procedures involving human subjects. 

In our experiment, problem (2) is solved in the Split-
Bregman framework [12], and the conjugate gradient (CG) 
method is used for the subproblem. The maximum iteration 
number of the main loop is 25, and we performed 20 CG 
iterations within each loop. Considering that the weighting 
strategy for the CTV algorithm may lead to nonuniform 
resolution, the parameter 𝜆 in (2) is initialized as 1 and then 
gradually decreased as the iteration progresses. Several other 
methods were compared with the proposed algorithm. The 
normalized MAR (NMAR) [13] is a state-of-the-art analytic 
algorithm. The LI-MAR pre-corrected results are provided for 
the NMAR algorithm as prior images to improve performance. 
Besides the conventional TV algorithm, the weighted TV 
(WTV) algorithm [14] designed for the MAR problem is also 
included.  

Fig. 2 shows the reconstruction results for an abdominal 
CT image with metal implants. NMAR partly reduces the 
metal artifacts, but it inevitably introduces severe secondary 
artifacts. All three iterative algorithms achieve better results at 
the cost of computation time. The WTV algorithm avoids most  

 

Figure 2.  Reconstructed abdominal CT images. Comparisons of (a) the 

ground truth, (b) the uncorrected image, (c) NMAR result, (d) 

conventional TV result, (e) WTV result, (f) CTV result. The display 
window is [-200,300] HU. 

 

Figure 3.  Residual images from the ground truth.  (a) NMAR result, (b) 

conventional TV result, (c) WTV result, (d) CTV result. The display 

window is [0,200] HU. 

 
of the artifacts in regions around the metal implants, however, 
it fails to reduce the streak artifacts that distributed widely. The 
proposed CTV algorithm outperforms the others due to its 
specially designed regularization term. RMSE values of 
NMAR, TV, WTV, CTV images are 36.57, 28.56, 27.81, 
25.16 HU respectively, which is consistent with the visual 
inspection.  

Fig. 3 shows the residual images from the ground truth. 
Star-shaped artifacts are easily observed in all the compared 
algorithms, which degrade the quality of images with great 
errors and might lead to wrong structures in the results.  On the 
contrary, our CTV algorithm is capable of dealing with these 
streak artifacts. 

We further investigate the effectiveness of the proposed 
CTV method in the context of multiple metal objects. As 
shown in Fig. 4, different numbers of dental fillings are 
inserted into the same CT image. Artifacts caused by a single 
metal object can be easily removed using any of these iterative 
algorithms or the NMAR algorithm. As the number of dental 
fillings increases, severe streak artifacts appear and distort the 
anatomic information. All the three compared algorithms 
introduce fake structures in case 2 and case 3. The proposed 
CTV algorithm provides a satisfactory result for case 2 and 
removes most of the artifacts in case 3.  

Table I gives the quantitative assessment in region of 
interest (ROI) for three iterative algorithms. Conventional TV 
algorithm mistakes several streak artifacts as real structures, 
which results in the highest reconstruction errors. The WTV 
algorithm assumes that pixels near the metal region are less 
accurate and assigns higher TV weight to regions around the 
metal implants. However, it obtains low structural similarity 
because it blurs the ROI severely but still retains the streak 
artifacts. Our CTV algorithm gets the best quantitative 
performances in all three cases. 
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Figure 4.  Reconstructed dental CT images. Each column is 
corresponding to one case with different number of dental fillings.  

Rows from top to bottom are (a) ground truth images, (b) uncorrected 

images, (c) NMAR results, (d) conventional TV results, (e) WTV 
results and (f) CTV results. The display window is [-200,300] HU. The 

region of interest is marked with a yellow box. 

TABLE I.  QUANTITATIVE ASSESSMENT IN REGION OF INTEREST FOR 

DIFFERENT ALGORITHMS 

  TV WTV CTV 

Case 1 
RMSE 73.91 69.92 66.99 

SSIM 0.9576 0.9614 0.9705 

Case 2 
RMSE 79.73 74.13 67.17 

SSIM 0.9424 0.9436 0.9659 

Case 3 
RMSE 138.66 129.47 108.26 

SSIM 0.8842 0.8893 0.9341 

   *Unit of RMSE: HU 

IV. DISCUSSIONS AND CONCLUSION 

The appearance of metal artifacts varies case by case. 
However, homogenous regularization terms are adopted by 
most iterative algorithms. In this work, we have proposed a 
CTV norm constrained iterative algorithm for metal artifact 
reduction. Based on the understanding of the image 
reconstruction process, we utilize the spatial information of 
both the metal objects and tissues to predict the distribution of 
streak artifacts. Then, a pixel-specific CTV norm is designed 
to reduce the artifacts and preserve the fine structures. 
Experimental results show the higher performance of our 
method.  

For further thought, since the CTV method only modifies 
the regularization term, it can be easily combined with other 
advanced MAR algorithms to even improve the efficacy while 
reducing the computation time. Besides, the proposed CTV 
method can also be extended and applied to other CT image 
reconstruction cases where prior knowledge of artifact 
distribution exists. 
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