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Abstract— In computer-aided diagnosis (CAD) focused on
microscopy, denoising improves the quality of image analysis.
In general, the accuracy of this process may depend both on the
experience of the microscopist and on the equipment sensitivity
and specificity. A medical image could be corrupted by several
perturbations during image acquisition. Nowadays, CAD deep
learning applications pre-process images with image denoising
models to reinforce learning and prediction. In this work,
an innovative and lightweight deep multiscale convolutional
encoder-decoder neural network is proposed. Specifically, the
encoder uses deterministic mapping to map features into a
hidden representation. Then, the latent representation is rebuilt
to generate the reconstructed denoised image. Residual learning
strategies are used to improve and accelerate the training
process using skip connections in bridging across convolutional
and deconvolutional layers. The proposed model reaches on
average 38.38 of PSNR and 0.98 of SSIM on a test set of
57458 images overcoming state-of-the-art models in the same
application domain.

Clinical relevance - Encoder-decoder based denoiser enables
industry experts to provide more accurate and reliable med-
ical interpretation and diagnosis in a variety of fields, from
microscopy to surgery, with the benefit of real-time processing.

I. INTRODUCTION

Medical image denoising is a well-known ill-posed in-
verse problem that has been extensively studied in the
past decades (traditional models) and recently improved
with deep learning approaches. It is possible to divide the
traditional models into four main typologies: (i) Spatial
Domain Filtering approaches, with Least Mean, Non-Local
mean (NLM) and K-Means Singular Value Decomposition
(K-SVD). (ii) Transform Domain Filtering with Fast Fourier
Transform (FFT), Discrete Cosine Transform (DCT) and
Block Matching 3-D (BM3D). (iii) Other domains covered
by Markov Random Fields (MRF), Maximum a posteriori
probability estimator (MAP), (iv) Sparse Representations
with learned simultaneous sparse coding (LSSC), Convolu-
tion Sparse Representation (CSR). However, for a complete
survey please refer to [1]. Modern applications for medical
image denoising are mainly developed with deep learning
models. In [2], for example, ad-hoc convolutional denoising
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autoencoders (CDAE) are used to denoise medical images
corrupted with different noise types. Later in [3], an encoder-
decoder neural network is designed to handle different noise
levels by introducing skip connections. In the following
year, in [4], a very deep convolutional neural network faced
the problem of denoising using residual learning [5] and
batch normalization [6]. Moreover, in [7], a variable splitting
technique is used for denoising. In [8], a different approach
with reversible downsampling operation and tunable noise
map is proved to be an effective denoising method. For
example, [9], [4] improve the chest radiographs reconstruc-
tion quality with slight modifications from the previous
cited models. In [10], a dynamic residual attention network
with noise gate is introduced to denoise medical images of
different typologies. With respect to previous models, our
work introduces a lightweight convolutional neural network,
making possible to transfer the trained networks on Lab-On-
Chip applications. Furthermore, the introduced model obtains
better results with respect to state-of-the-art models with a
relevant generalization power. In fact, our model is able to
deal with unknown noise characteristics (blind denoising) in
a wide range of σ (σ ∈ [0, 50]). In detail, noise can be
generated due several issues in scanning procedures [11],
[12] as well as improper staining [13]. Our model is able to
reduce artifacts leveraging its multi-scale layered architecture
(see also Fig ??). Important details of the tissues and/or
cell bodies or nuclei are preserved both by the architectural
design and by rigid pixel-by-pixel based losses (i.e. mean
absolute error). The paper is organized as follows: in section
II the model architecture and the dataset are described.
In section III experiments and results are presented and
discussed, followed by section IV with the conclusions.

II. METHODS

In section II-A the dataset is provided, while in section
II-B the procedure for preprocessing is shown. Finally, the
model architecture is explained in section II-C.

A. Dataset

Our deep learning model is trained and tested on a large
collection of microscopy images from Histopathologic De-
tection Dataset1. In total the dataset contains 220025 training
microscopy images and 57458 test images with size 96× 96
pixels on three channels (RGB). In detail, Fig. 2 shows a
sample set, illustrating various degrees of luminance, contrast
and structure.

1Link: Histopathologic Cancer Detection Dataset
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B. Image pre-processing and experimental setup

A synthetic generated Additive white Gaussian noise
(AWGN) is added to the microscopy images. AWGN follows
the standard assumption that there is no prior information
of the type of noise perturbation. This is also according to
[14] where real-world noise can be approximated as locally
AWGN. The noise generator is built with the numpy library
[15]. The 220025 images were corrupted with standard
deviation in the range between 0 and 50 (σ ∈ [0, 50]). The
perturbations are equally distributed over the total of the
images, obtaining sets of 4314 images each one belonging to
a σ level (e.g 4314 images for σ = 1, 4314 images for σ = 2,
and so on). In this way we obtained a training set of images
divided into 51 subsets each one with a different value of
σ from 0 to 50. The proposed model is trained by using
all these subsets. Moreover, despite the work in [8], [7] and
[9], in which the training dataset was generated with fixed
σ, we used a multi sigma training set; in fact, these works
trained different networks for each specific sigma while we
trained a single network capable of handling noise levels,
ranging from 0 to 50. In detail, this means that the network
is able to perform the so called blind denoising procedure
after training. In other words, our network can deal with
noisy images without knowing its characteristic perturbations
(i.e. noise intensity, distribution, standard deviation, etc...).
The different noise levels are generated with a fixed seed
to ensure fair comparison and experiment reproducibility. In
detail, all the noise maps are created with mean (µ = 0),
σ ∈ [0, 50]. It is performed a pixel-wise 8-bit quantization
in range [0, 255] (please for more details refer to our online
repository 2)

C. Model architecture

Our model architecture is inspired to the unsupervised
denoising autoencoders provided by [16], [2]. However, it
is not an autoencoder (in the strict sense of the term) but,
more precisely, an encoder/decoder network. The whole
model architecture is described in Figure 1. Given x the
clean image and x∗ the noised one, the objective is to
learn a mapping from x∗ (noisy image) to its denoised
representation z (reconstructed image). Formally, the model
m can be represented as m(x | x∗; θ); with θ parameters to
be learned. Initially, as it is shown in Figure 3, the original
microscopy image can be represented as a d-dimensional
space with pixel intensities normalized between 0 and 1
(x ∈ [0, 1]

d). Then, this space is corrupted by means of a
stochastic mapping x∗ ∼ qd(x∗ | x) where x∗ is a corrupted
version of x (see also Section II-B). In the encoder fθ,
the corrupted x∗ is mapped into a hidden representation
y = fθ(x

∗) = δW,b(x
∗). The activation function δ is the

Rectified Linear Unit (ReLU). While, the learnable parameter
θ is equal to {W,b}, with W the weight matrices and b the
biases. The decoder gθ′ reconstruct the original image from
the latent space ( z = gθ′ (y) = δ

′

W ′ ,b′
(y). The parameters

W, b,W
′
, b

′
are obtained by minimizing the reconstruction
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error between the original image (x) and the reconstructed
one (z) (see also Fig 3). The mean absolute error (MAE)
is the loss function that our optimizer tries to minimize.
In detail, the model architecture is designed leveraging the
interplay between two inception blocks [17] (Figure 1 - Box
(b) and (c)). According to the denoise model of [18], the
multiscale configuration is adopted because it performs better
on difficult image microscopy areas (edges and homogeneous
textures). To reduce the vanishing gradient problem [19], the
network architecture is designed wider rather than deep with
a strategic positioning of skip connections. In detail, two
different types of skip connections (by layer concatenation)
are designed to provide an alternative gradient path in back-
propagation. The first type of skip connections are positioned
between the encoder and the decoder (see Figure 1 - Box (a)).
In detail, they are typically adopted to avoid information loss
(see also [3], [20]). The second type of skip connections are
suited inside the two inception blocks and named shortcut
connections (see also Figure 1 - Box (b) and (c)). In some
situations, shortcut connections increase model accuracy by
leveraging residual learning approaches [4], [7]

III. EXPERIMENTS AND DISCUSSION

In section III-A, training process and prediction time are
presented. In section III-B our model results are shown in
comparison with traditional [21] and state-of-the-art deep
learning models [4], [9], [10].

A. Model configurations

The network is trained with Adam optimizer for a total
of 123.379 trainable parameters with b1 = 0.9, b2 = 0.999
and ε equal to 1 ∗ 10−7. The learning rate is of 1 ∗ 10−4.
The hyperparameters tuning comes through a grid search
on filter selection, learning rate monitoring, skip connection
positioning and several cost functions testing. The evaluation
of predictions and model performances are based on PSNR
evaluations. The model was trained with Nvidia GeForce
GTX 1080, processor Intel® Xeon(R) CPU E5-2630 v4
@ 2.20GHz × 20, employing Tensorflow v2.2, Cuda and
Cudnn v10.1 with Python v3.8. Regarding computation per-
formance, the average prediction time of the network is
approximately 0.03 seconds per image.

B. Model performances

As it is shown in Table I, the proposed architecture outper-
forms the other denoising methods using as reconstruction
measures PSNR and SSIM; for PSNR at σ = 10 the
difference between the proposed method and the second and
third top methods are 2.84dB and 5.27dB, respectively; at
σ = 25 the gap increases to 9.66dB with respect to DRAN
and 10.41dB to Residual MID. When σ = 25 it is obtained
the biggest improvement over the three σ evaluations. In
the last comparison, with σ = 50, the differences with the
second and third best evaluations were 5.25dB and 11.66dB,
respectively. Similar results can be seen for SSIM, when our
network reached the highest values in all three σ evaluations,
being the only network with values over 0.96. In Fig.
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Fig. 1. Figure 1 - Box (a) shows the proposed network architecture: the noised image x∗ is given as input, the first layer ( conv + relu) maps the initial
features followed by four inception reduction and inception blocks building the latent space y. The image reconstruction is composed of four transposed
convolutions and inceptions blocks, the last layer is a convolutional layer with a sigmoid activation function (conv + sigmoid). Figure 1 Box (b) shows
the proposed inception reduction block, the main branch has two strided convolution and average pooling that are merged in the concatenation layer. They
are followed by a dimensional reduction layer. The previous layer uses the shortcut connections for residual learning by executing a strided convolution to
match the spatial reduction occurred in the main path due to strided convolutions and average pooling. The addition layer, at the end, sum the weights and
passes the output to the next layer. Fig. 1 - Box (c) shows the proposed inception block: the main path has two convolutions and a dilated convolution that
are merged in the concatenation layer. They are followed by a dimensional reduction layer. The previous layer uses the shortcut connections for residual
learning. Finally, the addition layer sum the weights and passes the output to the next layer.

4, the reconstruction quality can be evaluated considering
homogeneous areas, edges and image borders.

IV. CONCLUSION

We presented a novel light weight CNN, that compares
well with state-of-the-art methodologies both classical and
deep neural networks. Our model takes advantages both from
its architecture and from the learning of multi-σ images.
Given the reduced number of learned parameters, the trained

Fig. 2. The figure shows four microscopy image tissues from the
Histopathologic Cancer Detection dataset

network can work on Lab-On-Chip applications. Future work
includes new medical image typologies and higher degrees of
noise map spatial distributions to increase the generalization
power. Future investigations will include more robust control
mechanisms that will be tested on larger datasets. For exam-

Fig. 3. Encoder-decoder pipeline: the perturbation of the clean image x
is done by qd obtaining the noisy image x∗. The encoder fθ maps into a
latent space y. The decoder gθ′ takes the latent space as input and outputs
an approximation of x, producing z. Finally, the model tries to minimize
during the epochs the reconstruction error between x and z (loss(x,z)).
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TABLE I
RESULTS AND COMPARISONS

Model σ PSNR SSIM
BMD3* [21]

10

28.19 0.6670
DnCNN [4] 35.26 0.8119
Residual MID [9] 36.93 0.8769
DRAN [10] 39.36 0.9735
IRUNet (Proposed) 42.20 0.9977
BMD3* [21]

25

25.02 0.5042
DnCNN [4] 26.70 0.7976
Residual MID [9] 29.23 0.8518
DRAN [10] 29.98 0.8993
IRUNet (Proposed) 39.64 0.9925
BMD3* [21]

50

20.14 0.4248
DnCNN [4] 21.49 0.5046
Residual MID [9] 21.65 0.5652
DRAN [10] 28.06 0.8198
IRUNet (Proposed) 33.31 0.9655
• Note: The traditional model is shown with *.

ple, any deformations induced by an incorrect reconstruction
of tissues or cellular details could be controlled and corrected
both with deep learning based approaches [22], [23] or
accurate thresholding techniques [24].
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