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Abstract— Surgical navigation for understanding
the internal structure of an organ is being actively
studied, and it is necessary to estimate the incision
trajectory to update the structure information dy-
namically. In this study, we focused on the fact that
the region incised by the electric knife becomes high in
temperature. Thus, we propose an estimation method
of incision trajectory by restoring thermal source
from diffused thermal images using a ConvLSTM and
connecting the restored thermal sources. We first
verified the possibility of thermal source restoration,
and confirmed that the method enabled to restore
the thermal source with high PSNR equivalent to
42.61. Next, we verified the accuracy of the incision
trajectory from proposed method by comparing with
the traditional method. The results suggested a better
performance compared with the traditional method.

I. INTRODUCTION

Image-guided surgery, which allows for surgeons to see-
through a hidden internal structure of organs that cannot
be seen in nature[1], [2], has been intensively studied for
the past quarter of a century. For adapting a dynamic
change of the surgical scene, it is necessary to acquire
the exact location of the incision and update the 3D
model based on mechanical simulation, e.g. finite element
method. A conventional approach uses feature points on
the organ surface to estimate the incision. However, it is
difficult to estimate correctly if the feature points cannot
be extracted properly.

In principle, an electric knife rapidly raises tissue
temperature, evaporates water inside the cell, and finally
destroys the tissue. Thus, the incision area has high
temperature just after incision. Therefore, it is possible
to estimate the incision trajectory by observing high tem-
perature region of tissue from thermal images. However,
the heat spreads around so that the thermal diffusion
increases estimation error. Therefore, it is important to
correctly recognize incision area based on thermal source
restoration. Note that simple tracking of the tip of the
electric knife erroneously detects the knife tip in no
contact with tissue as incision area.
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In this study, we propose an estimation method of
incision trajectory by restoring thermal source from dif-
fused thermal images using a ConvLSTM and connecting
the restored thermal sources. In the experiment, we first
verify the possibility of thermal source restoration from
thermal image sequence. Next, we verify the accuracy
of the incision trajectory from proposed method by
comparing with the traditional method while the images
that include an electric knife are excluded for basic
verification. The main contributions of this paper are as
follows:

• To propose an estimation method of incision trajec-
tory from diffused thermal images.

• To verify the possibility of thermal source restora-
tion from the diffused thermal images using ConvL-
STM.

II. RELATED WORKS
For acquiring changes in organ shape, a conventional

approach constructs a 3D organ model including internal
structures from MRI or X-ray CT images in advance
of surgery. It detects and tracks feature points using
RGB images and updates the 3D model during surgery
using a biomechanical model[1]. Paulus et al. proposed a
method to estimate the cut indirectly from the changed
distance of the surface points on the organ for adapting a
topological change of anatomical structures[3]. Another
possible approach is tracking the tip of the electric knife
from image sequence. However, it is important to avoid
detecting the tip of the electric knife that has no contact
with the tissue. Also, it is important to correctly detect
the incised region based on the time-series changes in
thermal diffusion.

RNN (Recurrent Neural Network)[4] is a type of super-
vised machine learning method that learns features from
time-series changes. ConvLSTM (Convolutional Long-
Short Term Memory)[5], which is an extension of RNN
and has a function of selecting and storing information in
image sequences, gives good results in predicting images
changes and tracking moving objects[6]. HybridNet is
a method to estimate time-series changes by combining
machine learning and physical models, and can estimate
thermal diffusion. In such methods, it is learned to
predict the information beyond the past information
in time-series. On the other hand, in this study, the
state before thermal diffusion is restored from the state
after thermal diffusion by learning that goes back in the
opposite direction to the time-series.
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Fig. 1. Outline of the proposed method

III. METHOD
In this paper, we propose an estimation method of

incision trajectory by connecting the intensity centroid
of the restored thermal sources from diffused thermal im-
ages using ConvLSTM. Figure 1 shows the outline of the
proposed method. Since restored thermal source can be
obtained by tracing back thermal diffusion, the thermal
images in the reverse order of time from the latest to the
past are used as the input to the ConvLSTM. Then, the
image sequence prior to input sequence, namely before
thermal diffusion, is estimated. Note that we rely on the
latest diffused thermal sources, not on the past images
because we need to avoid detecting the tip of electric
knife that has no contact with the tissue. Then, the
coordinates of the intensity centroid on the final frame
of the output sequence are extracted as:
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(1)
where x̃k and ỹk are the x, y coordinates of the intensity
centroid at step k, respectively. I(w, h) is the intensity
at the pixel (w, h), and n and m are the height and
width of the image, respectively. The calculated intensity
centroids are connected to form the incision trajectory.
Equation (2) represents MSE (Mean Squared Error),
which calculates difference of the intensities between the
ConvLSTM output and Ground Truth, at step k.

MSEk =
1

nm

n∑
h=1

m∑
w=1

(IGT(w, h)− Ĩk(w, h))
2 (2)

where IGT(w, h) is the intensity at (w, h) of Ground
Truth, and Ĩk(w, h) is the intensity at (w, h) ConvLSTM

Fig. 2. Electric knife used to prepare the dataset

Fig. 3. Preparing dataset

output at step k. MSE is used both for the error function
in machine learning and an evaluation metrics in the
experiments. In this study, in order to estimate the
past from the latest, the image sequence prior to input
sequence, namely before thermal diffusion, is used as the
Ground Truth.

IV. EXPERIMENT 1
We first verified the possibility of thermal source

restoration from the diffused thermal images using Con-
vLSTM. The evaluation metrics for restoration of the
thermal image were MSE and PSNR (Peak signal-to-
noise ratio), which is the ratio between the square of the
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Fig. 4. An example of thermal source restoration: (Upper) left 5 frames are input to ConvLSTM, right 5 frames are Ground Truth,
(Lower) ConvLSTM output

maximum intensity in the sequence, namely MAXk, and
MSEk as:

PSNRk = 10 log10
MAXk

2

MSEk
(3)

In addition, as a metrics for the intensity centroid,
Euclidean distance, distancek, between the coordinates of
intensity centroid from ConvLSTM output and Ground
Truth was calculated. Note that distancek was calculated
for the final frame of ConvLSTM output and Ground
Truth images.

A. Dataset and Experimental Conditions
We recorded scenes when just touching a porcine tissue

(commercially available processed ham) with an electric
knife (DEL1, Bovie Medical Corp.) without moving the
electric knife as shown in Fig. 2 and 3. After the tip
of the electric knife was touched with tissue for about
2 seconds and separated, a moving image was recorded
for about 30 seconds with a thermal camera (FLIR C5).
Then, 0.5 fps thermal image sequence was captured from
moving image, and the images were normalized to [0,255]
in the range of 15 ◦C to 70 ◦C. Ten frames were used
for learning with cropped in the center, and resized to
64×64, that is, both values of n,m in (1) and (2) were 64.
The latest 5 frames of the sequence were used as input,
and the past 5 frames were used as Ground Truth. We
prepared 31 sequences for training data and 16 sequences
for validation data.

When inputting to ConvLSTM, intensities in the im-
age were normalized to [0, 1] with a floating-point num-
ber, and the images were sorted in the reverse order of
time from the latest to the past. Since a large amount
of data is required for learning, data augmentation was
performed by randomly flipping left and right. For the
number of epochs, we adopted an early-stopping criteria,
which stops learning when the MSE for the validation
data does not improve for 20 consecutive epochs. For
optimization, we adopted Adam[8] with a learning rate
of 1.0×10−4 and reduced the learning rate by 0.5 times if
the accuracy does not improve for 4 consecutive epochs.
The batch size was set to 1. Thermal image tends to
have a low contrast between the thermal source and
the surroundings due to thermal diffusion, resulting that
the calculated intensity centroid gets closer to the image
center. Thus, only pixels with a temperature of 34.25 ◦C
or higher were used for calculating the intensity centroid.

Fig. 5. (Upper) Ground Truth, (Lower) ConvLSTM output

This temperature threshold was empirically determined.
The implemented system consists of PC with Intel Core
i7-9750H CPU, NVIDIA GeForce RTX 2070, 16 GB main
memory, and PyTorch 1.6.0 framework.

B. Results and Discussion
Table I shows the mean and standard deviation of

MSEk, PSNRk, and distancek in the last epoch. The
mean MSE was less than 1.0 × 10−4. The mean PSNR
42.61 confirmed that the estimation error was small to
the signal intensity. The mean distance showed that the
intensity centroid of the ConvLSTM output was close to
the centroid in Ground Truth within about a pixel. Also,
mean distance was calculated directly from the input
without restoring the thermal source. In particular, a
value such as 0.48± 0.60 and 2.17± 1.68 were obtained
in case of threshold value 28.75 ◦C and 23.25 ◦C, respec-
tively.

TABLE I
MSE, PSNR, and distance in Experiment 1

Metrics Value
MSE [a.u.] 2.81× 10−5 ± 9.52× 10−6

PSNR [a.u.] 42.61± 1.37
distance [px] 0.79± 0.49

An example of the ConvLSTM output is shown in
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Input Output Ground Truth
Fig. 6. Example of input and output images to estimate incision trajectory. Left six images for the input, middle one image for the
output, and right one image for the Ground Truth

Fig. 4. The upper row is the dataset, where the left 5
frames were input images to ConvLSTM and the right
5 frames were Ground Truth. The lower row is the Con-
vLSTM output. Figure 5 shows the three-dimensional
plot of the temperature distribution, especially in the
6th and 10th frames in the upper row of Figure 5, i.e.
Ground Truth, and the 1st and 5th frames in the lower
row, i.e. ConvLSTM output. The results suggested that
the distributed heat was concentrated in the ConvLSTM
output, similar to Ground Truth. The calculation time
was less than 10 minutes to train the network.

V. EXPERIMENT 2
We verified the accuracy of the incision trajectory

from proposed method by comparing with a traditional
method that connects the intensity centroid that was
obtained from the raw image without thermal source
restoration. The evaluation metrics for accuracy of the
incision trajectory was extended DTW (Dynamic Time
Warping)[9] to 2D, which calculates a sum of the mini-
mum distances of the points between two data.

A. Dataset and Experimental Conditions
The path of incision trajectory was pre-determined,

and the material whose heat conductivity is much dif-
ferent from the tissue phantom was temporarily placed
and captured by thermal camera. Then, based on the
captured image, Ground Truth of the incision trajectory
was manually created. Note that there may be some
variability due to manual labeling. We captured the
scenes by a thermal camera when stroking the tissue
phantom with an electric knife. More specifically, we
stroked the tissue and kept away a knife for a while. We
repeated this procedure a couple of times for making an
image sequence. The images were cropped and resized as
well as Experiment 1. The images containing the electric
knife were excluded for basic verification to verify the
performance without noise derived from the existence of
a tool. 20 and 11 sequences were prepared for training
and validation data, respectively, with 76 frames at the
minimum length and 207 frames at the maximum length.

Since the dataset needs to be loaded with a fixed num-
ber of frames during training, the data loader loaded the
fixed length sequence by shifting the original sequence
by one frame. The number of loaded sequences were
fseq − (flen − 1), where fseq is the number of original
frames, and flen is the number of frames to be set as
a fixed length, in this study, it was set to 10 frames. k
in Figure 1 represents the number of shifts to obtain a

Fig. 7. An example of extended DTW

Fig. 8. Output example: (Upper) Ground Truth, (Middle) Tradi-
tional method, (Lower) Proposed method

fixed length sequence from the original long sequence.
For example, when k = 0, the 1st to 10th images from
the original sequence are used, when k = 1, the 2nd
to 11th images are used, and when k = 3, the 3rd to
12th images are used. As a result of loaded all sequences
from original dataset, the training and validation data
were 2487 and 997 sequences, respectively. The number
of epochs, optimization method, batch size, and temper-
ature threshold were the same as Experiment 1. Also,
The execution environment for performing calculations
was the same as in Experiment 1.

B. Results and Discussion
Figure 6 shows an example of the input and output

by the proposed method. Figure 7 shows an example of
extended DTW, where blue points are predicted points
by proposed method, red points are points of Ground
Truth, and black lines are the minimum distances from
each bluepoint to red point. In this paper, extended
DTW was defined as the value of extended DTW divided
by the number of blue points because each trajectory has
a different number of data points. Table II shows the
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mean and standard deviation of extended DTW for each
of the traditional and proposed methods. The proposed
method suggested a better performance compared with
the traditional method.

TABLE II
extended DTW in Experiment 2

Metrics Traditional method Proposed method
Ext. DTW [px] 1.23± 0.67 0.96± 0.54

Figure 8 shows a couple of output examples. The upper
row is the Ground Truth, middle low is the incision
trajectory estimated by the traditional method, and the
lower row is the incision trajectory estimated by the
proposed method. From the results, it can be confirmed
that the estimated incision trajectories have a similar
shape to the trajectory of the Ground Truth. However,
the estimated trajectory tends to become shorter because
the image has a broad area of high intensity regions so
that the intensity centroid tends to get closer to the
center of the high intensity regions. The calculation time
was less than 11 hours to train the network.

VI. CONCLUSIONS
In this paper, we proposed an estimation method of

incision trajectory by restoring thermal source from dif-
fused thermal images using a ConvLSTM and connecting
the restored thermal sources. The results of Experiment
1 suggested that the distributed heat was concentrated
in the ConvLSTM output, similar to Ground Truth. The
results of Experiment 2 suggested that proposed method
gave better value than the traditional method. However,
the estimated trajectory tends to become shorter because
the image has a broad area of high intensity regions so
that the intensity centroid tends to get closer to the
center of the high intensity regions.
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