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Abstract— Histological analysis of carotid atherosclerotic 

plaque tissue specimens is a widely used method for studying the 

diagnosis of ischemic heart disease and stroke. Understanding 

the physiological and pathological mechanisms of carotid 

atherosclerotic plaque is of great significance for the effective 

prevention and treatment of plaque formation and rupture. In 

this work, we adapted a self-attention generative adversarial 

model to virtually stain label-free human carotid atherosclerotic 

plaque tissue sections into corresponding H&E stained sections. 

The self-attention mechanism and multi-layer structure are 

introduced into the residual steps of the generator and in the 

discriminator. Our method achieved the best performance 

(SSIM, PSNR, and LPIPS of 0.53, 20.29, and 0.30, respectively) 

in comparison with other state-of-the-art methods. 

 
Clinical Relevance—The proposed approach allows for the 

virtual staining of unlabeled human carotid plaque tissue images. 

It identifies the histopathological features of atherosclerotic 

plaques in the same tissue sample, which could facilitate the 

development of personalized prevention and other 

interventional treatments for carotid atherosclerosis. 

I. INTRODUCTION 

Atherosclerosis, a multifactorial disease of the arterial wall, 
is a major precursor of ischemic heart disease and stroke. 
Ischemic stroke is attributed to thrombosis and cerebral 
ischemia and is often associated with chronic atherosclerotic 
plaques that accumulate in the subendothelial layer (intima) of 
the carotid artery [1]. Understanding the physiological and 
pathological mechanisms of carotid atherosclerotic plaque is 
crucial for the effective prevention and treatment of plaque 
formation and rupture. Histological analysis is adopted in 
investigating the cellular and molecular features of stained 
atheroma tissue sections [2, 3]. However, histological staining 
of carotid atherosclerotic plaque is a complex and laborious 
process. In addition, histological staining inevitably introduces 
human and laboratory variations that pose challenges to the 
accurate analysis of histopathological images [4]. The time-
consuming histological staining procedures also create 
obstacles for fast pathological diagnosis. 

Recently, efforts have been focused on virtually 
histological staining images via deep-learning-based methods. 
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One study uses conditional generative adversarial networks 
(cGAN) to transfer unstained hyperspectral lung histology 
images to their corresponding hematoxylin and eosin (H&E) 
stained images [5]. Rivenson et al also employed the GAN 
model to virtually stain the autofluorescence images to H&E 
images [6]. Another study used cGAN to perform virtual 
staining of bright-field microscopic images of unlabeled rat 
carotid artery tissue sections to assess the condition of carotid 
artery intimal hyperplasia [7].  

In this study, we propose a self-attention GAN model that 
can virtually stain label-free carotid atherosclerotic plaque 
tissue sections into corresponding H&E stained sections, as 
summarized in Fig. 1. We demonstrate the generation from an 
unlabeled tissue section to corresponding H&E virtual stained 
sections. Our virtual staining images can also observe the 
typical characteristics of human carotid artery plaque, such as 
neovascularization, necrotic core, and cholesterol crystals. 

II. METHODS 

A. Self-attention 

Wang et al. [8] proposed the non-local model that could 
obtain the global receptive field. 
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Figure 1. Schematic diagram of our virtual staining framework for 
unstained tissue using self-attention GAN model. The schematic 

diagram outlines the data preparation and training framework that 

can be used to generate H&E virtual stains. 
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 𝑦𝑖 =
1

𝐶(𝑥)
∑ 𝑓(𝑥𝑖 , 𝑥𝑗)𝑔(𝑥𝑖)∀𝑗  (1) 

where x is the input feature map, i represents the spatial 
location of the output, f is the function to calculate the 
similarity between i and j, and g is the function to calculate the 
represented feature map at j. In Fig. 2(b), the functions f(x), 
g(x), and h(x) represent query, key, and val mapping. B, C, W, 
and H are the batchsize, the number of channels, the width of 
the feature map, and the height of the feature map, respectively. 
Non-local operations directly capture remote dependencies by 
calculating the relationship between any two locations. The 
operation need not be limited to adjacent areas. It is equivalent 
to the construction of a convolution kernel as large as the size 
of the feature map to obtain more information. 

B. Self-Attention-Based Pix2pix model 

The architecture of the proposed model is shown in Fig. 2. 
We adapt the non-local model as a self-attention generative 
adversarial network to the image-to-image translation Pix2pix 
framework [9, 10], enabling the generator to efficiently model 
relationships between widely separated spatial regions. In this 
model, the self-attention mechanism is introduced into the 
residual steps of the generator, as shown in Fig. 2(a). In the 
discriminator, a multi-layer structure is introduced. More 
specifically, three layer discriminators with identical network 
structure opera operates at different image scales. The layer at 
the coarsest scale has the largest receptive field to guide the 
generator generating globally consistent images.  

In our non-local model, the discriminator and loss function 
are different with the self-attention GAN. 

The loss function of GAN loss is defined as follows: 

𝐿GAN(𝐺, 𝐷) = 𝐸[log𝐷(s, x)] + 𝐸[log⁡(1 −𝐷(s, G(s))]  (2) 

where s represents the input unstained section, and x represents 
the histologically stained section. In the proposed pix2pix 
model, the loss function of GAN loss is defined as the sum of 
the GAN loss at each discriminator layer k:  

 min
𝐺
max
𝐷

∑ 𝐿GAN(𝐺, 𝐷k)𝑘=1,2,3  (3) 

To extract features from multiple layers of the discriminator 
and match these intermediate representations from the real 
and the synthesized image, the feature matching loss is 
defined as: 

𝐿𝐹𝑀(𝐺, 𝐷k) = 𝐸(s,x)∑
1

𝑁i

T

i=1

[||Dk
(i)
(s, x) − Dk

(i)
(s, G(x))||1]. 

   (4) 

where T is the total number of layers and 𝑁i  denotes the 
number of elements in ith layer. The discriminators D1, D2, and 
D3 are trained to differentiate real and synthesized images at 
the 3 different scales, respectively. The full objective function 
is the combination of the total GAN loss and feature matching 
loss: 

min
𝐺
((max

𝐷
∑ 𝐿GAN(𝐺, 𝐷k)

𝑘=1,2,3

) + 𝜆 ∑ 𝐿𝐹𝑀(𝐺, 𝐷k))

𝑘=1,2,3

 

  (5) 

where λ controls the importance of the two terms. 

III. EXPERIMENTS AND RESULTS 

A.  Sample acquisition and Image pre-processing 

The samples were obtained from the patients with 
advanced carotid artery stenosis who underwent carotid 
endarterectomy (CEA) at Beijing Tiantan Hospital, China. The 
surgically resected atherosclerotic plaques were fixed with 
formalin overnight, and embedded in paraffin. The paraffin-
embedded samples were further cut into 10μm thick slices and 
placed on thin glass slides for bright-field microscopic 
imaging with a digital slide scanner (Zeiss Axio Scan.Z1, 
Germany) equipped with a ×10/0.45 NA objective (0.44 
μm/pixel) [11]. 

After histological staining process, the whole-slide tissue 
sections were used for co-registration. The registered whole-
slice images were cropped into patches of 512 × 512 pixels. 
For quantitative evaluation, the training set and test set were 
divided by the ratio of 8:2. In total, 7039 and 2514 image pairs 
were obtained for the training and the test set, respectively. 

 
Figure 2. The architecture of our H&E virtual staining model. (a), 

the architecture of the non-local model. (b), schematic diagram of 

the location of adding the non-local model to the generator. (c), the 

architecture of the multi-layer discriminator. 
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B.  Evaluation Metrics 

The outputs of the network were measured by three metrics: 
structural similarity index (SSIM) [12], peak signal-to-noise 
ratio (PSNR), and Learned Perceptual Image Patch Similarity 
(LPIPS) [13]. SSIM is a reference-based quality assessment 
indicator that compares the pixel intensity between the 
reference ground truth image and the output image. Peak 
signal-to-noise ratio (PSNR) indicates the quality of image 
generation. PSNR is the most common and widely used image 
evaluation index. The larger the PSNR value, the less 
distortion, and higher image quality. PSNR and SSIM have 
commonly used evaluation indicators for image generation 
and restoration, but the two indicators pay more attention to 
the fidelity of the image rather than the visual quality. LPIPS 
introduces a new indicator of perceptual similarity judgment, 
which is consistent with humans. LPIPS pays more attention 
to whether the visual characteristics of images are similar. 
Therefore, the smaller the LPIPS, the closer the generated 
image is to ground truth. In this study, we used the trained 
Alexnet [14] to extract image features. 

C.  Virtual staining of human carotid artery plaque tissue 

sections 

The proposed method is compared with pix2pix [10], 
UNIT [15] and cycleGAN [16]. Note that we trained our 
networks with the same datasets for a fair comparative study. 
In Fig. 3, these generated images showed that our model can 
convert the bright-field images of unstained human carotid 
artery plaque tissue sections to the desired H&E-stained 
sections. The first column in Fig. 3 show that the 
neovascularization is presented in H&E virtual and 
histological staining, respectively. The presence of 
neovascularization indicated that the plaque is vulnerable and 
highly permeable, which can further promote plaque 
progression and induce plaque rupture and bleeding. In the 
middle column, the results show that our model can infer 
unlabeled bright-field images of necrotic cores in H&E 
staining. In the last column, we can see that the staining effect 
of cholesterol crystals under our model is similar to ground 
truth. 

D. Quantitative and Visual comparison with state-of-the-art 

methods 

The quantitative evaluation for the proposed method and 
other state-of-the-art methods are summarized in Table I. Our 
method achieves the best performance on SSIM, PSNR, and 
LPIPS. Specifically, our method achieves the lowest LPIPS, 
which demonstrated that our results are much visually closer 
to the ground truth than other state-of-the-art methods as 
LPIPS is a visual quality indicator of human visual 
characteristics. 

TABLE I.  QUANTITATIVE EVALUATION FOR THE PROPOSED 

NETWORK AND THE STATE-OF-THE-ART METHODS 

Methods 
H&E 

SSIM ↑ PSNR ↑ LPIPS ↓ 

UNIT 0.34±0.61 16.64±0.88 0.41±0.41 

CycleGAN 0.45±0.27 17.25±0.19 0.38±0.30 

Pix2pix 0.46±0.19 17.27±0.38 0.43±0.52 

Ours 0.53±0.06 20.29±1.06 0.30±0.14 

E. Ablation study 

To study the role of the non-local model and multi-layer 
discriminator, ablation experiments were performed with or 
without a non-local model and multi-layer discriminator, 
detailed in Table II. 

TABLE II.  ABLATION STUDY WITH OR WITHOUT THE NON-LOCAL 

MODEL AND MULTI-LAYER DISCRIMINATOR 

 
H&E 

SSIM ↑ PSNR ↑ LPIPS ↓ 

Pix2pix 0.46±0.19 17.27±0.38 0.43±0.52 

Pix2pix+multi-layer 

discriminator 
0.49±0.14 17.34±0.53 0.38±0.18 

Ours 0.53±0.06 20.29±1.06 0.30±0.14 

In the experiments, we observed that many repeated 
patterns often appear in the generated images without the 
multi-layer discriminators. From the evaluation index, our 
model achieves the best performance with the non-local model 
and the multi-layer discriminator. 

 
Figure 3. The visual comparison of outputs generated by our model and 
state-of-the-art methods. (a) The original unstained tissue section is used 
as the input of the neural network, (b) (c) (d) The three H&E virtual 
stained by the pix2pix, cycleGAN, and UNIT, (e) The outputs generated 
by our model, (f) The histologically stained sections. Scale bar, 100 μm. 
The histopathological features of atherosclerotic plaque, such as 
neovascularization (marked by white asterisk), necrotic nuclei (marked 
by black arrowhead), and cholesterol crystals (marked by black arrow), 
in e and f. 
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F. Implementation 

The network was implemented using Python and Pytorch 

libraries. All calculations used to train the network were 

performed on a system equipped with NVIDIA GeForce 

TITAN RTX with 24 GB memory. The parameter λ in 

Equation 5 was set to 10. The momentum parameters were set 

to 0.5, and the batch size was set to 16. The initial learning 

rate of the generator and the discriminator was set to 0.0002. 

A total of 100 epochs were trained. It took 39 hours to train 

the model and 104 ms to predict one image. 

IV. DISCUSSION 

Histological staining analysis is performed as a “golden 
standard” in diagnostic pathology. It is widely used to identify 
carotid artery tissue constituents such as neovascularization, 
necrotic core, and cholesterol crystals. However, the tissue 
staining process is laborious, and the image quality of tissue 
staining images is variable. This staining process has led to a 
barrier in the development of standard and rapid histological 
image analysis systems. Therefore, virtually histological 
staining images by deep-learning-based methods is highly 
required. 

In this study, we adapted a self-attention GAN model that 
virtually stain label-free human carotid atherosclerotic plaque 
tissue sections into corresponding H&E stained sections. In 
terms of quantitative evaluation metrics, such as SSIM, PSNR, 
and LPIPS, our method achieved the best performance in 
comparison with other state-of-the-art methods. The deep-
learning-based method can provide digital staining of label-
free tissue sections, which can bypass the lengthy and 
laborious tissue preparation process and can mitigate human-
to-human variations for standard histological staining of tissue 
samples. 

Our study has some limitations. First, the dataset for 
training the network is relatively small, and the generated 
staining components of atherosclerotic plaque are relative 
small. In future work, the number of human carotid 
atherosclerotic plaque tissue sections will be increased and 
multiple type of stains will be added to train the model. 
Furthermore, the generalization of the proposed method will 
be verified on the datasets from other hospitals. In addition, 
this virtual staining method can be enhanced by combing the 
unstained images acquired using other advanced label-free 
imaging techniques, for example, Two-photon and 
photoacoustic microscopy. Finally, the efficiency of model 
training needs to be further improved to increase clinical 
practicability. 

V. CONCLUSION 

In conclusion, we adapted a self-attention GAN model that 

virtually stain label-free carotid atherosclerotic plaque tissue 

sections into corresponding H&E stained sections. In 

comparison with other state-of-the-art methods, our method 

achieved the best performance for evaluation metrics of 

virtual staining and histological staining. This deep-learning-

based method can provide digital staining of label-free tissue 

sections, which can bypass the lengthy and laborious tissue 

preparation process and can mitigate human-to-human 

variations for standard histological staining of tissue samples. 

The virtual staining method will provide strong support to the 

applications of histological analysis of atherosclerotic plaque.  
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