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Abstract— Heart rate variability (HRV) is a non-stationary, 

irregularly sampled signal that represents changes in heart rate 

over time. The HRV spectrum can be divided into four main 

ranges covering high, low, very low and ultra-low frequencies. 

The components lying in these bands, both amplitude and 

frequency modulated, provide valuable information about 

various physiological processes. The aim of this study was to 

verify the usefulness of adaptive variational mode decomposition 

(AVMD) in the extraction of these components from overnight 

HRV. The effectiveness of this new approach was compared to 

multiband filtering (MBF) using a synthetically generated 

signal, as well as real data from three patients. AVMD turned 

out to be more robust and effective than MBF, particularly in 

the high and low frequency ranges, making it a reliable method 

for deriving the HRV frequency components. 

 
Clinical Relevance— The extracted frequency components of 

heart rate variability provide insight into the regulation of basic 

physiological processes by the autonomic nervous system. 

I. INTRODUCTION 

Heart rate variability (HRV) is a signal that represents 
changes in heart rate (HR) over time. It is defined as the time 
intervals between consecutive R peaks in the QRS complexes 
of the electrocardiogram. HR is controlled by the autonomic 
nervous system (ANS) through two antagonistic subsystems 
called sympathetic (SNS) and parasympathetic nervous 
system (PNS) [1]. HRV analysis provides a lot of useful 
information, such as the state of the ANS, so research on HRV 
has been going on for decades. The HRV spectrum can be 
divided into four main ranges. The high frequency (HF) band 
(0.15-0.4 Hz) mostly represents PNS activity with the vagus 
nerve and is clearly related to respiration [2],[3],[4],[5]. The 
low frequency (LF) band (0.04-0.15 Hz) is influenced by 
blood pressure (BP) through the baroreflex system, PNS and 
SNS [2],[3],[4],[5]. The very low frequency (VLF) band 
(0.004-0.04 Hz) is less known. Factors that may affect it 
include physical activity, thermoregulation, renin-angiotensin 
system and the internal nervous system [2]. An even less 
understood range is the ultra-low frequency (ULF) band 
(<0.004 Hz), most often associated with the circadian rhythm 
[2],[4],[5]. Summarizing, except well-known relationship 
between HF and respiratory rhythm, there is a lack of 
quantitative information of mentioned frequency components. 
Moreover, it is not even certain which factors actually 
influence, and to what extent, VLF and ULF. This underlines 
the importance of a proper method of extracting these 
components for their further analysis. 
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HRV frequency analysis is most often performed using the 
fast Fourier transform or autoregressive modelling [6],[7]. 
Other popular methods include short-time Fourier transform 
(STFT) [1],[6] and empirical mode decomposition (EMD), 
which has been used, among others, to identify the HRV 
component associated with breathing [8] or to analyze the HF 
component in fetal HRV [9]. Recently, the effectiveness of 
extracting frequency components from overnight HRV was 
tested using multiband filtering (MBF), EMD and STFT on a 
synthetic signal and real data [10]. Despite the non-stationary 
nature of the signal, the best results were achieved with MBF. 
An interesting and effective new alternative to those 
approaches is the variational mode decomposition (VMD) of 
a signal into components with distinct frequency 
characteristics [11]. While it has already been used for ECG or 
HR, the analysis of the HRV components by VMD has not yet 
been attempted. 

The aim of this work was to test the suitability and 
accuracy of the adaptive version of VMD in deriving the four 
frequency component from overnight HRV. A synthetically 
generated signal and real data were used and the results were 
compared directly with MBF. 

II. METHODS 

A. Data 

In order to directly evaluate the extracted frequency 
components, a synthetic, non-stationary, 6-hour HRV signal 
was used, generated in the same way as in [10]. The idea was 
to simulate the four components (denoted as HFc, LFc, VLFc 
and ULFc) in a continuous form and sampled at 1 kHz, as both 
amplitude (AM) and frequency (FM) modulated signals with 
properties determined from real HRV analyses. Summing 
them and shifting up by 0.95 s produced a continuous cHRV. 
Then unevenly HRV distributed in time was created by 
selecting samples lying on the cHRV, consistent with the 
relationship between HRV values and the timeline. As the last 
step, the data was disturbed by adding Gaussian noise. 

The real data come from an overnight polysomnographic 
study of St. Vincent's University Hospital Sleep Disorders 
Clinic in Dublin available on the PhysioNet platform [12]. 
The HRV spectrograms of all 25 subjects were analyzed for 
clear traces of HF and three of them (Patients #5, #7 and #11) 
were selected as representative data for further work. Of all 
polysomnographic records, only the ECG signals sampled at 
128 Hz were used. For Patient #11, it was necessary to remove 
the first 54 minutes due to electrode disconnection artifacts. 
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B. Multiband Filtering and Adaptive Variational Mode 

Decomposition 

The reference method in this study is multiband filtering 
(MBF), which has proven to be a more effective one than 
EMD or STFT [10]. The passband, zero-phase, minimum 
order FIR filters with a stopband attenuation of 60 dB were 
applied for HF, LF and VLF components extraction according 
to their frequency ranges. For the ULF component, an 
analogous lowpass filter was used. 

VMD is one a the newest mode decomposition method. It 
can decompose a non-stationary signal into several intrinsic 
mode functions (IMF) with different center frequencies [11]. 
For this purpose, it uses adaptive Wiener filters and 
optimization is done with the alternating direction multiplier 
method. Importantly, this is a non-recursive approach where 
all searched modes are extracted simultaneously. The final 
IMFs of a signal x(t) result from minimizing the sum of the 
spectral widths of all modes: 

    
   

   

2

,
2

,min
π

s.t.    ,

kj t

k
u kk k

k

k

d j
t u t e

dt t

u t x t





 
    

    
    







 

where uk stands for the kth mode with its center frequency ωk, 
δ is the Dirac delta, and * denotes convolution. 

The original VMD procedure, unlike e.g. EMD, assumes 
an arbitrary set number of searched modes – maxIMFs, while 
it is possible that each of the non-stationary, overnight HRV 
component contains in its characteristic range several 
dominant frequencies due to its temporary stabilization. 
Inadequate setting of this parameter may lead to missing or 
mixing the searched modes [13]. Therefore, we propose an 
adaptive VMD (AVMD), aimed at finding the appropriate 
number of IMFs. It is based on the observation that a justified 
increase of maxIMFs precipitously improves the matching of 
the IMFs sum to the signal and reduces the residual ε. At the 
same time, maxIMFs should be relatively small to shorten the 
time needed for the optimization procedure embedded in 
VMD. In the case of HRV decomposition, the four 
components are searched, so the algorithm starts with 
maxIMFs = 4, which is then successively incremented. In the 
ith iteration, the relative energy of ε is calculated in the 
logarithmic scale 
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and compared with δε(i-1). If the reduction of 
Δε = δε(i-1) – δε(i) is greater than last time, the algorithm 
proceeds, but if it is not so during three consecutive iterations, 
the procedure is terminated and the decomposition result 
associated with the smallest δε forms its final outcome. 

C. Hilbert transform 

The instantaneous amplitudes and frequencies of the non-
stationary HRV components can be derived using the Hilbert 
transform (HT) [14]. The use of HT on a real component xc 
returns the analytical signal Xc which consists of both the 
original xc and the imaginary part hc (HT of xc): 
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Ac and φc are clearly defined, but the instantaneous frequencies 
of components (fc) require additional calculations after φc 
unwrapping: 
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D. Procedure 

The suggested optimal ECG sampling rate for analyzing 
the HRV spectrum is 250 to 500 Hz or even higher [15]. For 
this reason, each real ECG was upsampled from 128 to 1280 
Hz to find R peaks with a resolution better than 1 ms. In the 
next step, the RR signal was created from the time intervals 
between successive R peaks. There were distortions in real 
ECGs due to various artifacts which is common but leads to 
outliers in HRV. To preserve the original timeline and not to 
distort the component phases in the rest of the signal, RRs 
lower than 0.61 s were added to their larger neighbors to form 
surrogate RRs, and then values above 1.22 s were split into 
two equal surrogates. The timeline was reconstructed as a 
cumulative sum of RR intervals and cubic spline interpolation 
at 10 Hz was used to obtain the uniformly sampled signal. An 
antialiasing, zero-phase filter with a cut-off frequency of 0.5 
Hz was then applied before resampling HRV down to 2 Hz. 

In the next step, AVMD was performed to obtain the 
optimal amount of IMFs. HT was applied for each mode to 
calculate the instantaneous frequencies and their histograms 
were generated. Finally, HFc, LFc, VLFc, and ULFc were 
formed from the sum of all IMFs whose histograms contained 
most of the counts in the corresponding frequency ranges. 

E. Evaluation of the method 

The effectiveness of AVMD was assessed on the basis of 
the similarity of the extracted and actual frequency 
components of the synthetic HRV. The Pearson coefficient r 
of correlation between the signals’ samples was calculated, as 
well as the relative error of extraction: 
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where xc and xs stands for the extracted and synthetic 
component, respectively. In addition, the medians of absolute 
residuals |εc̃| were calculated, and the one-sided Wilcoxon 
signed-rank test performed at significance level α = 0.05 to 
check whether |εc̃| for one method was lower than for another. 
The above results were confronted with MBF. 

Finally, the actual waveforms of the HRV components were 
extracted from the three patients’ data, and then their 
instantaneous amplitudes and frequencies were computed and 
visualized together. 

III. RESULTS 

The effectiveness of AVMD was evaluated by comparing 
the results of extraction with the known components of the 
synthetic signal in terms of their instantaneous amplitudes and 
frequencies calculated using the HT. The reproduced AM and 
FM retain their real modulation character (Fig. 1). 
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The quantitative analysis of the results for AVMD and 

MBF was summarized in Table I. Both methods have similar 
accuracy with the advantage of AVMD for HF and LF. 
However, for VLF and ULF, the MBF turned out to be more 
precise. 

Additionally, the traces of frequency components extracted 
from the real HRVs (Patient #5, #7 and #11) were visually 
compared for AVMD and MBF in Fig. 2. The waveforms are 
nearly identical for both methods, which confirms correct 
extraction in all cases.  

The reproduced AM and FM from clinical data are shown 
in Fig. 3. Despite the obvious differences between patients, the 
overall modulation characteristics remain similar. 

 

 

 

TABLE I.  RELATIVE ERRORS (δ),  CORRELATION COEFFICIENTS (r), AND 

MEDIANS OF ABSOLUTE RESIDUALS (|ε ̃c|) 

Component 

Method accuracy 

MBF  AVMD 

δ [%] r |εc̃| [ms] δ [%] r |εc̃| [ms] 

HF 36.0 0.938 4.66 34.2 0.944 4.44* 

LF 16.7 0.986 3.00 13.0 0.992 2.40* 

VLF 13.0 0.992 0.88* 19.4 0.988 2.24 

ULF 0.01 1.000 0.08* 0.71 0.992 1.45 

* significantly smaller 

IV. DISCUSSION 

The aim of this study was to verify the usefulness of 
AVMD in the extraction of four frequency components from 
overnight HRV. In determining the effectiveness of the 
proposed method, we used own synthetic signal instead of the 
application of the popular integral pulse frequency 
modulation (IPFM) model [16], since inferring the true 
physiological drives from the HRV components requires an 
additional solution of an inverse problem [10]. In this work, 
the original cHRV was generated from the non-stationary 
components with known AM and FM, which allowed for a 
precise analysis of the obtained results. 

Because VMD is one of the most modern approaches to 
signal decomposition, there is still little research on its 
adaptive implementation. Most of the published algorithms 
are general in nature and therefore quite complex, e.g., 
[13],[17],[18],[19]. On the contrary, the procedure proposed 
in this work, dedicated to HRV decomposition, is very simple. 
It only takes into account the unevenly decreasing energy of 
the residual, however performs quite well as shown when 
decomposing the synthetic signal (Fig. 1). 

AVMD turned out to be more effective in the correct 
extraction of HFc and LFc compared to MBF (Table I). 
Despite the proper extraction of the VLFc, specific, minor 

 

Figure 1.  Instantaneous amplitudes (left) and frequencies (right) of 

the components extracted from synthetic HRV with AVMD (color) 

against their true traces (black). 
 

 

Figure 2.  Frequency components extracted from real HRVs using 

MBF (black) and AVMD (color). 
 

 

Figure 3.  Instantaneous amplitudes (left) and frequencies (right) of 

the components extracted with AVMD from real HRV of Patients #5 
(blue), #7 (green) and #11 (red). 

 

649



  

deviations in the AM may suggest that some part of this range 
was included in another mode (Fig. 1). All the calculated 
performance coefficients indicate the advantage of MBF in 
the case of the ULFc, however, the AM of this band was much 
better reconstructed by AVMD (Fig. 1) than in the analogous 
experiment carried out for MBF [10]. This is important 
because it represents the magnitude of physiological activity. 
The FM of ULFc also retains its true characteristic, although 
there is no frequency representation below 0.0005 Hz (Fig. 1). 
Overall, it seems that AVMD has provided generally more 
precise information even in the ULF band compared to MBF. 

Extracted components from real HRVs were extremely 
similar in the case of both, completely different methods, 
which only confirms the correctness of the extracted 
components. When comparing the methods, it should also be 
emphasized that MBF requires a priori knowledge of the 
frequency ranges of the components sought. This information 
is not so important in the case of a VMD, where the algorithm 
itself looks for separate IMFs in the signal. The problem of 
selecting the number of searched modes has been successfully 
solved by the adaptive version of VMD based on residual 
analysis, making the new approach not only more effective 
than MBF but also more robust due to the lighter restrictions 
on components belonging to the frequency bands. 

The presented methodology has some limitations. The 
main one is that the IMFs from AVMD have been combined, 
accepting the well-established frequency ranges of the 
expected four physiological components. It should be also 
noted that the extracted frequency components do not directly 
reflect physiological drives, but the impact of ANS activity 
on final HRV. In addition,  the influence of ECG artifacts on 
the algorithm efficiency was not investigated and the method 
was tested on only three real signals.  

V. CONCLUSION 

The AVMD’s overall performance in the overnight HRV 
component analysis is better that MBF, as well as EMD and 
STFT. Only in the case of VLF, MBF was clearly more 
effective. In the case of ANS analysis, the most important and 
most frequently studied bands are HF and LF, for which 
AVMD definitely outperforms the other analyzed methods of 
frequency component extraction. Summarizing, the derived 
components along with their AM and FM are reliable in a 
qualitative and quantitative manner, both when analyzing real 
HRVs and in comparison with the ground truth – a synthetic 
signal. 

In addition, the FM of the real components obtained from 
AVMD fell into the standard four frequency ranges. This only 
confirms the compliance of the results with the bands defined 
in the literature. 

Future work will focus on the reconstruction of internal 
ANS drives from the extracted components using the IPMF 
model. Based on the satisfactory results of AVMD, it is also 
worth trying to implement this approach in online analysis. 
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