
 

 

 

 

 

Abstract—Predicting gastric cancer disease-free survival 

(DFS) and identifying patients probably with high risk are 

imperative for more appropriate clinical treatment plans. 

Compared with CT-based radiomics researches adopting linear 

Cox proportional hazards models, deep neural networks can 

perform nonlinear transformations and investigate complex 

associations of image features with prognosis. Exploring shared 

information between post-contrast CT (with better visual 

enhancement) and pre-contrast CT (with few side effects and 

contraindications) is another challenge. In this work, a cross-

phase adversarial domain adaptation (CPADA) framework is 

proposed to adapt a deep DFS prediction network (DDFS-Net) 

from arterial phase to pre-contrast phase. The DDFS-Net is 

designed for feature learning and trained by optimizing the 

average negative log function of Cox partial likelihood. The 

CPADA maps the feature space of pre-contrast phase (target) to 

arterial phase (source) in an adversarial manner by measuring 

Wasserstein distance. The proposed methods are evaluated on a 

dataset of 249 gastric cancer patients by concordance index, 

receiver operating characteristic curves, and Kaplan-Meier 

survival curves. The results demonstrate that our DDFS-Net 

outperforms linear survival analysis methods, and the CPADA 

works better than supervised learning and direct transfer 

schemes.  

 
Clinical Relevance—This work enables preoperative DFS 

prediction and risk stratification in gastric cancer. It is feasible 

and effective to infer a patient’s risk of failure given a pre-

contrast CT image by DDFS-Net adapted by CPADA. 

I. INTRODUCTION 

Gastric cancer (GC) ranks third among the leading causes 
of cancer-related death across the globe [1]. Many patients 
have recurrent diseases after resection with curative intent [2]. 
It is hence imperative to predict disease-free survival (DFS) 
preoperatively and identify patients probably with high risk for 
more suitable treatment plans.  

Computed tomography (CT) is now widely applied in 
capturing information about recurrence and death for GC. 
Previous CT-based radiomics researches that quantify tumor 
heterogeneity and mine high-throughput image features have 
revealed success in evaluating prognosis for GC patients [3-5]. 
However, there still remain two points that need improving. 
For one, deep learning has shown superior performance in that 
deep neural networks (DNN) made up of stacked layers are 
capable of tackling nonlinear transformations and extracting 
image features that may have complex interactions with 
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various medical tasks. For another, the Cox proportional 
hazards (CPH) model is usually adopted as the standard tool 
in survival analysis [6]. But the CPH model examines the joint 
effects of potential features on event occurrence risk under the 
assumption that a patient’s risk of failure is a linear 
combination of these features, which may be too simplistic. 
Thus, the above considerations motivate us to apply DNN to 
learn high-order features and model survival data nonlinearly. 

Given the inputs of DNN, CT images have pre-contrast 
phase and post-contrast phase according to whether the 
contrast medium is injected. Different phases represent 
multiple records from the same patient but with visual 
discrepancies (Fig. 1). Post-contrast CT is preferable because 
it can visualize tumor vascularity and reveal tumor 
heterogeneity.  For example, the mucosa at the lesion can be 
presented as a focal enhanced line in arterial phase [7]. Pre-
contrast CT, though with ordinary visual appearances, can 
reduce the side effects and contraindications brought by 
contrast medium. Thus, transferring knowledge from post-
contrast to pre-contrast phase can explore more effective 
feature representation while mitigating side effects and 
contraindications. However, directly transferring the DNN 
trained on post-contrast CT to pre-contrast CT may result in 
performance degradation caused by domain shift [8], which 
calls for domain adaptation methods [9, 10]. Domain 
adaptation can successfully cope with the source and target 
domains by feature alignment, and adversarial learning excels 
in minimizing feature distances and mapping feature 
distributions [11, 12]. But so far, there is a lack of research on 
cross-phase adversarial domain adaptation. 

 
Fig. 1.  Examples of a) arterial phase CT and b) pre-contrast phase CT. The 
tumors are framed by red boxes. 

In this work, we propose a cross-phase adversarial domain 
adaptation (CPADA) framework to adapt a deep DFS 
prediction network for GC from arterial to pre-contrast phase 
CT. Our main contributions are as follows. First, we train a 
nonlinear DNN for DFS prediction by optimizing the average 
negative log function of Cox partial likelihood, and achieve 
better performance than survival analysis methods focusing on
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linear relationships. Second, the proposed CPADA framework 
maps the pre-contrast phase (target) feature space to arterial 
phase (source) in an adversarial manner, wherein Wasserstein 
distance with gradient penalty is measured to learn more 
indiscriminative features between domains. Third, we evaluate 
the stratification ability of CPADA-predicted risk values, 
verifying the prognostic efficacy of CPADA in providing 
personalized treatment plans. 

II. METHODOLOGY 

A. Pre-training Deep DFS Prediction Network on Source 

Domain 

To extract high-order features related to DFS and achieve 
good prognostic performance, we first pre-train a deep DFS 
prediction network (DDFS-Net) based on arterial phase CT 
images X from source domain and complete survival data 
(DFS time T and DFS event E). 

In survival analysis, the hazard function has two 

components: a baseline hazard and a risk item 𝑟(𝑥)  = 𝑒ℎ(𝑥) 
(representing the effects of potential features on baseline 
hazard), where ℎ(𝑥) is a log-risk function [13]. The standard 
CPH model generally estimates ℎ(𝑥)  by a linear function 

ℎ̂𝛽(𝑥) = 𝛽𝑇𝑥  and tunes 𝛽  to optimize the Cox partial 

likelihood: 

𝐿(𝛽) = ∏
𝑒𝑥𝑝(ℎ̂𝛽(𝑥𝑖))

∑ 𝑒𝑥𝑝(ℎ̂𝛽(𝑥𝑗))𝑗∈ℛ(𝑇𝑖)

 𝐸𝑖=1 ,                  (1) 

where 𝐿(𝛽) represents the probability of patient i having an 
event occurrence (𝐸 = 1) at event time 𝑇𝑖 , given this set of 
patients still at risk, and 𝑥𝑖  can represent the image data. 
Inspired by DeepSurv [14], we design a DDFS-Net to provide 

a nonlinear analysis by replacing the linear function ℎ̂𝛽(𝑥) 

with the network prediction ℎ̂𝜃(𝑥), where nonlinear effects of 
image features on the Cox partial likelihood are 
parameterized by the network weights θ. 

Fig. 2a illustrates the architecture of DDFS-Net. We utilize 
the 2D-fashion deep residual network (ResNet-10) as the 
backbone [15] and modify the structure after the last residual 
block. Specially, we introduce a local average pooling (LAP) 
module to reduce the impact of feature noise, as motivated by 
the local max pooling in [16]. The LAP module works by 
partitioning the feature maps after the last residual block to 
two parts horizontally and performing average pooling on 
each part separately. Then, we concatenate the outputs of the 
two parts as the final feature representation, followed by two 
fully connected layers and SoftMax. The final output of the 
DDFS-Net represents the estimate of a patient’s risk of 
failure. 

The DDFS-Net for source domain 𝐹𝑆  is trained and 
optimized by minimizing the average negative log function of 
Cox partial likelihood with regularization: 

𝐿(𝜃) =
−1

𝑁𝐸=1

∑ (ℎ̂𝜃(𝑥𝑖) − 𝑙𝑜𝑔 ∑ 𝑒ℎ̂𝜃(𝑥𝑗)
𝑗∈ℛ(𝑇𝑖) )𝐸𝑖=1 + 𝜆‖𝜃‖2

2 ,(2) 

where 𝑁𝐸=1 is the number of patients with event occurrence 
and λ is the parameter for ℓ2 regularization. We adopt Adam 
optimizer with an initial learning rate of 0.0001 and a weight 
decay rate of 0.00001. We set the batch size to 32, and the 
training process is run for 200 epochs in Python (version 
3.7.4) using PyTorch (version 1.7.0) on an NVIDIA GeForce 
RTX 2080Ti GPU. 

 
Fig. 2.  The proposed cross-phase adversarial domain adaptation framework, 
consisting of three steps: a) pre-training deep DFS prediction network on 
source domain, b) cross-phase adversarial domain adaptation (CPADA), and 
c) inference process of new target images. KM, Kaplan-Meier. 

B. Cross-Phase Adversarial Domain Adaptation (CPADA) 

We then fix the feature extractor part of the pre-trained 𝐹𝑆 
and learn the DDFS-Net for target domain 𝐹𝑇  by mapping 
pre-contrast phase feature space from target domain to arterial 
phase from source domain adversarially. Similar to the 
concept behind Wasserstein generative adversarial networks 
[17], we play a two-player minimax game (Fig. 2b). A 
discriminator D is designed to maximize the Wasserstein 
distance between feature spaces obtained by 𝐹𝑇  and pre-
trained 𝐹𝑆, while the DDFS-Net for target domain 𝐹𝑇 tries to 
fool the discriminator D to make mistakes, i.e. minimizing the 
Wasserstein distance. The Wasserstein distance is continuous 
and differentiable, and thus can provide useful gradients for 
optimization, which ensures the convergence of CPADA. 
 In this case, we suppose the discriminator D is a 1-Lipschitz 
function, and D is optimized by maximizing the Wasserstein 
distance 

𝐿𝑤𝑑(𝐷) = 𝔼𝑋𝑆~𝑝𝑆
𝐷(𝐹𝑆(𝑋𝑆)) − 𝔼𝑋𝑇~𝑝𝑇

𝐷(𝐹𝑇(𝑋𝑇)) ,   (3) 

while 𝐹𝑇 is trained by optimizing 

𝐿𝑤𝑑(𝐹𝑇) = −𝔼𝑋𝑇~𝑝𝑇
𝐷(𝐹𝑇(𝑋𝑇)).                  (4) 

To fulfill the Lipschitz constraint, we add a gradient penalty 
for discriminator D [18]: 

𝐿𝑔𝑝(𝐷) = (‖𝛻�̂�𝐷(�̂�)‖
2

− 1)
2

 ,                 (5) 

where �̂� is a set of features containing source features, target 
features, and random points along the straight line between 
source and target feature pairs. Thus, the discriminator D can 
be overall optimized by 

𝑚𝑎𝑥 𝐿𝑤𝑑(𝐷) − 𝛼𝐿𝑔𝑝(𝐷) ,                     (6) 

where 𝛼 is an empirically set balancing coefficient.  
Specifically, the discriminator D produces real (source) / 

fake (target) predictions via three fully connected layers 
followed by Leaky ReLU. During adversarial training, we 
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adopt Adam optimizer for 𝐹𝑇 and stochastic gradient descent 
(SGD) optimizer for D (learning rate 0.001). The parameter 
𝛼 is practically set to 0.8. 

C. Inference Process of New Target Images 

In the testing stage, we realize the inference process of 
applying the DDFS-Net adapted by CPADA on a new pre-
contrast CT image from target domain (Fig. 2c). When 
inputting a pre-contrast CT image of a GC patient, the adapted 
DDFS-Net 𝐹𝑇  can extract features more indiscriminative 
between arterial phase and pre-contrast phase and predict risk 
values for patients. 

Models are evaluated using concordance index (C-index) 
and area under the time-dependent receiver operating 
characteristic (ROC) curve (AUC) that measures DFS 
prediction performance at 1, 2, and 3 years. Further, using the 
median of patients’ risk values as the cutoff, patients can be 
stratified into high-risk and low-risk groups of developing 
diseases. We plot Kaplan-Meier survival curves to explore 
significant differences between groups, which can verify the 
stratification ability and the prognostic efficacy of models in 
providing personalized treatment plans. 

III. DATASET AND RESULTS 

A. Dataset and Preprocessing 

This work retrospectively collect 249 GC patients from 
Peking University People’s Hospital (Table I). The 
Institution’s Ethical Review Board approved all experimental 
procedures involving human subjects. Pre-contrast and 
arterial phase CT images as well as complete DFS 
information are collected. The DFS event is defined as local 
recurrence, metachronous metastatic disease, or death caused 
by GC. If an DFS event occurrence is observed (𝐸 = 1), the 
DFS time T represents the time elapse between preoperative 
CT scan and the event occurrence time. If an DFS event 
occurrence is not observed (𝐸 = 0), the DFS time T ranges 
from preoperative CT scan to the last follow-up visit. We 
randomly allocate the patients to a training set (166 patients) 
and a testing set (83 patients) at a 2:1 ratio. More details about 
patient enrollment can be found in our previous work [5]. 

TABLE I. CLINICAL INFORMATION OF GASTRIC CANCER PATIENTS 

Clinical information Training (n=166) Testing (n=83) 

Age, mean ± SD, years 64.1±12.3 61.3±12.9 

Sex, No. (%)   

Male 122 (73.5) 60 (72.3) 

Female 44 (26.5) 23 (27.7) 

DFS time, median (IQR), 
months 

25.5 (12.0-46.0) 22.0 (12.0-45.0) 

DFS event, No. (%)   

E = 1 58 (34.9) 33 (39.8) 

E = 0 108 (65.1) 50 (60.2) 

NOTE. SD, standard deviation; IQR, interquartile range. 

The tumor regions of interest are manually segmented on 
the slice with the largest tumor area for both pre-contrast and 
arterial phase CT images by two radiologists upon consensus. 
We crop the images by corresponding axis-aligned minimum 
bounding boxes base on radiologists’ segmentations and 
dilate the cropped patches within an adaptive small range. 

Meanwhile, we adjust the window width to 500HU and 
window level to 30HU to ensure appropriate and unified CT 
image intensities. All the patches are then resized to 224×224. 

B. Effectiveness of Deep DFS Prediction Network 

When comparing linear and nonlinear methods for DFS 
prediction as presented in Table II, we adopt the same testing 
set as that in [5] for a fair comparison. For linear methods on 
pre-contrast and arterial phase CT images, we also follow the 
same procedures as in [5]: extracting and selecting features by 
radiomics and fitting features by linear CPH model. 

TABLE II. COMPARISON OF LINEAR AND NONLINEAR METHODS FOR DFS 

PREDICTION ON TESTING SET 

Configurations 
C-index 

(95% CI) 

Time-dependent AUC 

1-year 2-year 3-year 

Pre-contrast 
(Linear) 

0.596 
(0.509-0.683) 

0.649 0.641 0.695 

Pre-contrast 
(Nonlinear) 

0.608 
(0.509-0.707) 

0.659 0.608 0.579 

Arterial 
(Linear) 

0.616 
(0.526-0.705) 

0.628 0.635 0.691 

Arterial 
(Nonlinear) 

0.707 
(0.594-0.819) 

0.711 0.706 0.658 

NOTE. “Linear” denotes feature extraction and selection by radiomics and feature fitting by linear Cox 
proportional hazards model. “Nonlinear” denotes our nonlinear DDFS-Net. CI, confidence interval. 

The nonlinear DDFS-Net effectively improves the 
prognostic performance compared to linear methods as 
indicated by C-indices of 0.707 vs. 0.616 for arterial phase CT 
images and 0.608 vs. 0.596 for pre-contrast images. 
Specifically, the time-dependent AUCs for DDFS-Net on 
arterial phase are largely promoted at 1 and 2 years compared 
to linear methods. Also, the DDFS-Net can separate patients 
with more significant log-rank P values (0.0005 vs. 0.006 and 
0.004 vs. 0.1, Fig. 3), indicating the superior risk stratification 
ability of nonlinear methods. Besides, we can observe that 
pre-contrast images yield a poor prognostic performance, no 
matter which method is adopted. This is probably because 
pre-contrast images suffer from information loss, while 
arterial phase may provide more useful and detailed 
information related to DFS. 

 

Fig. 3. Survival analysis for linear and nonlinear methods. “Linear” denotes 
feature extraction and selection by radiomics and feature fitting by linear Cox 
proportional hazards model. “Nonlinear” denotes our nonlinear DDFS-Net. 
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TABLE III. COMPARISON OF DIFFERENT METHODS ON TARGET DOMAIN USING PRE-CONTRAST CT 

Methods 
Configurations 

C-index (95% CI) 
Time-dependent AUC 

Training Testing 1-year 2-year 3-year 

Supervised Learning 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑟𝑎𝑖𝑛 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑒𝑠𝑡 0.608 (0.509-0.707) 0.659 0.608 0.579 

Direct Transfer 𝑆𝑜𝑢𝑟𝑐𝑒𝑡𝑟𝑎𝑖𝑛 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑒𝑠𝑡 0.514 (0.409-0.618) 0.529 0.521 0.519 

CPADA 𝐹𝑇(𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑟𝑎𝑖𝑛) 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑒𝑠𝑡 0.649 (0.558-0.740) 0.636 0.630 0.587 

NOTE. “Supervised Learning” denotes training and testing DDFS-Net on pre-contrast CT images from the target domain. “Direct Transfer” means directly applying the source domain pre-trained DDFS-Net on 
the target domain. “CPADA” represents testing the CPADA adapted DDFS-Net on the target domain. 𝑆𝑜𝑢𝑟𝑐𝑒𝑡𝑟𝑎𝑖𝑛, 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑟𝑎𝑖𝑛, and 𝑇𝑎𝑟𝑔𝑒𝑡𝑡𝑒𝑠𝑡 denote the training set of source domain, the training set and 
testing set of target domain, respectively. 

C. Comparison with Supervised Learning and Direct Transfer 

Briefly, the comparison results of the proposed CPADA 
framework with different methods on target domain are 
summarized in Table III. The supervised learning scheme 
denotes training and testing on target domain. The direct 
transfer scheme directly applies the source domain pre-
trained DDFS-Net 𝐹𝑆 on target domain. 

 
Fig. 4. Risk stratification ability comparison for direct transfer scheme and 
CPADA framework. 

We can clearly see a large drop in C-index and AUCs when 
using the direct transfer scheme,  the reason behind which 
should be the different feature space distributions between 
pre-contrast and post-contrast image phases [7]. This is 
further verified in Fig. 4a that the directly transferred model 
even fails in risk stratification (P = 0.84). Using the CPADA 
framework, however, the prognostic performance gains 
improvements of 6.7% and 26.3% in C-indices, respectively, 
compared to supervised learning and direct transfer. The 
adapted DDFS-Net extracts features more indiscriminative 
between different phases. Through the CPADA framework, 
DFS prediction on a new pre-contrast image can be done more 
safely, conveniently, and accurately. 

IV. CONCLUSION 

This work proposes a CPADA framework to adapt the deep 
DFS prediction network from arterial phase CT images to pre-
contrast phase, which improves the prognostic performance 
and enables more appropriate and safer treatment decision 
making for GC patients. Experimental results show that our 
nonlinear DDFS-Net effectively improves the prognostic 
performance compared to linear methods, and comparison 
results indicate that the CPADA framework outperforms 
supervised learning and direct transfer schemes in DFS 
prediction and risk stratification. In the future, a more 
practical scenario with multiple source domains, i.e., arterial, 
venous, and delayed phases can be considered and explored. 
Also, models will be further validated on external datasets. 
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