
  

Abstract— Toxoplasma gondii is a parasite that chronically 

infects about a third of the world’s population. During chronic 

infection, the parasite resides within tissue cysts in the form of 

poorly understood bradyzoites which can number in the 

thousands.  Our prior work showed that these bradyzoites are 

metabolically active exhibiting heterogeneous replication 

potential. The morphological plasticity of the mitochondrion 

potentially informs about parasite metabolic state. We 

developed an image processing based program to assist manual 

classification of mitochondrial morphologies by trained 

operators to collect data and statistics from the manual 

classification of shapes. We sought to determine whether certain 

morphologies were readily classifiable and the congruence 

among manual classifiers, i.e. the degree to which different 

operators would place the same objects within the same class. 

Results from three operators classifying mitochondrial 

morphologies from 5 tissue cyst images showed that among the 

four classes, one (Blobs) were the easiest to classify.  There was 

remarkable congruence between 2 of the 3 operators in 

classifying the objects (96%), while the agreement among all 3 

operators was somewhat modest (57%). Such information would 

be valuable for biologists studying these parasites as well as in 

development of fully automated methods of morphological 

classification. 

I. INTRODUCTION 

Toxoplasma gondii, a protozoan parasite, chronically 
infects about a third of the world’s population causing 
symptomatic disease in the immune compromised [1]. During 
the acute infection, the parasite is in a rapidly dividing form 
called a tachyzoite which is controlled by a healthy immune 
system [1]. However, instead of being completely cleared, 
some parasites evade the immune system by transitioning to 
the poorly understood bradyzoite form within tissue cysts 
establishing a life-long infection [1, 2]. These cysts are 
typically located in the central nervous system and muscles 
[2]. Reactivation of these forms in the context of immune 
suppression causes life-threating conditions including 
toxoplasmic encephalitis and disseminated toxoplasmosis [1, 
3]. 

The approaches for studying T. gondii during the chronic 
infection have been based on the assumption that the 
bradyzoites within the cysts are largely dormant, with all 
analysis viewing the tissue cyst as the unit of infection. Prior 
work from our group showed that the bradyzoites within the 
cysts are not dormant but rather capable of replication that is 
heterogeneous within cysts [4]. This observation suggests the 
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need for investigating the biology of the parasite during 
chronic infection at the level of individual bradyzoites, which 
can number in the hundreds to several thousand [4], rather than 
that of the cysts that house them. To achieve this 2-3 log 
increase in sensitivity there is a need for more robust tools to 
evaluate physiological heterogeneity. While programs have 
been developed to aid the analysis of host response via protein 
recruitment [5] and the analysis of the tissue cyst morphology 
[6], detailed analysis has not been performed at the level of the 
individual bradyzoites and further, at the level of organelles 
within them. To build upon the previous finding that the 
bradyzoites are not dormant and are actually metabolically 
active with heterogeneous replication, investigation of 
functional state of mitochondria, among other processes, is 
necessary, as mitochondrial function directly informs about 
the metabolic activity of bradyzoites [7]. T. gondii tachyzoites, 
associated with the acute infection, possess a single large 
mitochondrion [8].  Previous work, in tachyzoites, has shown 
that morphology of this mitochondrion is plastic, reflecting its 
physiological state [9, 10]. These morphologies include a lasso 
(ring), arcs (linear and curvilinear forms), tadpoles (also 
termed sperm-like) and blobs (also termed collapsed) forms [9, 
10]. In addition, under conditions of nutrient stress and drug 
pressure, the mitochondrion can be fragmented into multiple 
puncta [9, 11].  

In contrast, little is known about the morphology of 
mitochondria within encysted bradyzoites. Given the 
heterogeneity of the bradyzoites, manual classification of 
mitochondrial profiles presents challenges as this process is 
time consuming, subject to tedium and thus error. We 
developed an image processing based program to assist 
manual classification of morphologies by trained operators as 
an initial step toward the eventual development of image 
processing and machine learning approaches to automatically 
classify mitochondrial morphologies. The purpose of the 
development described here was to collect data and statistics 
from manual classifications of mitochondrial shapes to 
determine whether certain morphologies were readily 
classifiable and the congruence among manual classifiers, i.e. 
the degree to which different operators would place the same 
objects within the same class. 

II. MATERIALS AND METHODS 

A. Image Input 

First, tissue cysts of the Type II ME49 strain were purified  
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from brains of chronically infected CBA/J mice using a Percoll 
gradient as previously described [12]. All experimental 
procedures involving use of animals were approved by the 
Institutional Animal Care and Use Committee at the 
University of Kentucky. The purified tissue cysts were labeled 
with a DNA dye (DAPI, Invitrogen) and MitoTracker red 
(Invitrogen) to target two subcellular entities, nuclei (DAPI) 
and actively respiring mitochondria (Mito). The cysts were 
fixed in 3% paraformaldehyde and deposited on glass slides, 
cover-slipped and imaged. The z-plane image with the widest 
diameter for each cyst was designated as the representative 
image to be used in the analysis.  The images were acquired 
on a Zeiss Axioplan microscope using a 100x/1.4 numerical 
aperture objective using a grayscale AxioCam MRM digital 
camera. The resulting magnification in images was 15.5 pixels 
per micron.  Examples of DAPI and Mito images are shown in 
Fig. 1. 

B. Image Processing and Segmentation 

A program was developed in MATLAB using its Image 
Processing toolbox and its App Designer was used in the 
creation of a graphical user interface (GUI) [13].  The GUI 
allowed for the creation of a user-friendly method to facilitate 
the classification of mitochondrial morphologies within cysts. 

First, a linear intensity scaling was performed on the 8 bit 
grayscale image such that the pixel intensities occupied the full 
range (0-255). Enhancing the contrast between the background 
pixels and the target objects’ pixels was then performed 
utilizing top hat and bottom hat filters [14].  The two filters 
were used in conjunction as described in (1).  The foreground 
was emphasized by the addition of the top hat filter to the 
original image, I, which made the bright spots brighter.  The 
objects’ perimeter was enhanced by the subtraction of the 
bottom hat filtered image.   

 [J]=Tophat[I]+[I]−10*Bottomhat[I] (1) 

Next, thresholding was used to separate foreground and 
background pixels. The Otsu method was used to obtain an 
initial estimate of the threshold [15]. A slider feature was 
added to the program so that the operator could modify the 
initial selection of threshold, if needed, to ensure the target 
objects were segmented as accurately as possible.   

After the evaluation of a few images the initial estimates of 
threshold were selected as 40% of the Otsu threshold for Mito 
images and 80% of the Otsu threshold for the DAPI images.  
The DAPI images required a higher percentage of the Otsu 
threshold which resulted in the exclusion of a greater number 
of lower value pixels. This exclusion prevented under 
segmentation in the DAPI images where the individual target 
objects were less defined.  Following thresholding, watershed 
segmentation [16] was applied to the DAPI images to segment 
the target objects more accurately, especially those within 
proximity of each other.  To prevent over segmentation which 

can happen with the watershed method, it was implemented 
after using a height transform to suppress smaller peaks, 
therefore peaks of one standard deviation of image pixel 
values or less were ignored. 

C. Object Identification 

Using the selected threshold, the Mito images were 
binarized, i.e. the pixels with intensity values above the 
threshold were given a value of 1 while the remaining pixels 
were set to 0, creating a binary image.  The Moore-Neighbor 
tracing algorithm with Jacob’s stopping criterion [14] was then 
used to locate the boundary of each object of interest. 
Geometric and pixel value information for the identified 
objects were extracted with the use of various functions such 
as ‘regionprops’ in Matlab [13]. Two criteria were applied to 
the identified objects to exclude objects that were smaller than 
a certain size and dimmer than a certain threshold (but with 
intensity above the binarization threshold). Minimum axis 
length and maximum intensity within each object were used to 
compare against user selected size and intensity thresholds. 
This step allowed for the exclusion of objects that had a minor 
axis, or width, less than a specific value in microns. This ‘low 
size’ exclusion criterion was defaulted to half a micron, i.e. 
seven pixels. Dimmer objects that may result from over 
segmentation could be excluded with the intensity criterion.  
The default threshold for this ‘low intensity’ exclusion 
criterion was set to be the same value as the threshold found 
for creating the binary image, therefore it did not initially 
exclude any objects. These exclusion criteria were displayed 
in the GUI for the operator to update as needed.  

Previous work has highlighted four main classes of 
mitochondrial morphology in tachyzoites that have association 
with function, these are punctate/condensed (blob), 
tadpole/sperm-like, arc (linear, curvilinear, loop), and lasso 
(ring) shapes [9, 10]. The main purpose of this development, 
in addition to capturing manual classification, was to 
determine whether the morphologies were a) readily 
identifiable, i.e. whether operators with varying degrees of 
experience would classify the object the same way, and b) the 
congruence, i.e. degree of agreement, among different 
operators in classifying the same objects. Therefore, buttons 
were added to the GUI alongside the isolated target objects’ 
image to collect this information. An additional ‘Other’ class 
was added for objects that the operator could not place in any 
one of the four specified classes. This was particularly 
important as nothing has been described about the 
morphological diversity of mitochondrial profiles in encysted 
bradyzoites. 

D. Capture of Operator Classification Data 

To evaluate the manual classification process, the program 
was set up to allow for the input of a settings file containing 
the image file information along with the threshold and 
exclusion criteria selections that a single lead operator had 
previously specified. This step ensured that the different 
operators were presented with the same objects for 
classification.   

 Fig. 2 shows the layout of the GUI. The workflow in 
identifying and classifying the mitochondrial morphologies is 
as follows: Bradyzoites contain a single nucleus and, based on 
what is known about tachyzoites, they are expected to contain 

 
Figure 1. A representative DAPI (left) and Mito (right) image. 
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a single mitochondrion [8].  The number of nuclei identified 
from the DAPI stained images serves as a reference for the 
number of mitochondrial objects detected in Mito images, 
therefore, the operator first selects the DAPI tab which 
displays the DAPI image. Original DAPI image and a 
binarized version using the default threshold (based on Otsu 
algorithm) and the number of identified nuclei (after 
application of height transform and watershed segmentation) 
are displayed, the operator then adjusts the threshold along 
with the exclusion criteria, if needed. The Mito tab is selected 
next which results in a display as shown in Fig. 2. The initial 
view includes the objects (marked by a green bounding box 
that surrounds each object) identified using the default 
threshold. The operator then adjusts the threshold by utilizing 
the ability to zoom in on the images shown in the top row.  
After this step, the low size and intensity exclusion criterion 
are adjusted if needed. After every adjustment, the ‘Update 
Count’ button is clicked after which the updated number of 
objects is displayed in the ‘Count’ box. If the number of 
identified and retained objects exceeds the number of 
identified nuclei in the DAPI image, the number in the ‘Count’ 
box is displayed in red color, which serves as a reference in 
selection of parameters because as stated before, in this 
parasite the number of mitochondrial objects is generally 
expected to be similar to the number of nuclei. As MitoTracker 
records only active mitochondria, the presence of “inactive” 
mitochondria can result in the number of objects recorded 
being lower than that for DAPI-stained nuclei. Likewise 
extensive mitochondrial fragmentation [9] could result in a 
higher relative mitochondrial count, although such fragments 
would be typically excluded using the size criteria. Each 
identified object after the application of exclusion criteria, 
simply referred to as “objects” from here on, is displayed 
within a bounding box as shown in the two panels on the left 
in Fig. 2. 

For the classification process, objects are displayed in the 
3 panels in the lower right as shown in Fig. 2.  The first panel 
shows the outline or boundary of the object with grid lines 
(scaled in microns) for ease of visualization and assessment of 
the object’s size.  The second panel shows the contrast 
enhanced object.  The third panel shows a 6x6 micron area 
(centered on the center of the object) from the processed DAPI 
image (in magenta) superimposed on the same area from the 
original Mito image. This third panel provides the operator a 
combined view of the objects’ neighborhood from both images 
such that proximity and placement/orientation of the object 
relative to neighboring nuclei can be considered in classifying 
the object. After visualizing the provided information, the 
operator then selects the object’s class as either Blob, Tadpole, 

Lasso or Arc by clicking on the appropriate button. If the 
operator cannot place the object in any of these 4 classes, then 
the ‘Other’ button is clicked. The operator also has an option 
of selecting the confidence that they have in classifying that 
object among High, Medium, or Low. The confidence is set to 
default to High. Once the appropriate class button is clicked, 
the program automatically displays the next object, although 
any of the previously classified objects can be revisited by 
using the previous and next buttons or directly selecting an 
object number using a dropdown menu. 

To keep track of overall progress, the bounding boxes 
surrounding each object change color from green to red for the 
object under consideration for classification and turn blue once 
the object is classified. The change in color also assists the 
operator for taking a zoomed in look, if necessary, at the object 
in the original image shown in the top left panel. 

Feedback from the eventual operators was sought 
throughout the iterative development process and was 
incorporated in the GUI design to ensure ease of use. For 
instance, for the selection of threshold step, it was suggested 
that it would help to have a separate larger window of the 
thresholded image to evaluate the effects of adjusting the 
threshold. Therefore, the image under the threshold slider was 
also displayed in a separate window that would update every 
time the threshold was updated. This image depicted not only 
the pixels that exceeded the threshold, but also displayed the 
original image with an outline of what was retained when the 
threshold was applied.  Further, for ease of identification of the 
object with respect to the original image, the bounding boxes 
in the binary image were replicated on the original image (top 
left panel). 

III. RESULTS 

Three operators manually classified objects from 5 images. 
There was a total of 1,138 objects that were identified (after 
application of exclusion criterion) and classified. Of the 1,138 
objects, 649 were placed in the same class by all 3 operators, 
i.e. 57% of the objects were classified similarly by all 
operators. A total of 1,092 objects (96%) were classified as 
belonging to the same class by 2 out of the 3 three operators. 

Fig. 3 shows the classification for the first 50 objects (of 
1,138) made by the 3 operators. The figure shows that Blobs 
were more likely to be classified similarly by all 3 operators 
followed by Arc, Tadpole and Other. There were very few 
Lassos classified and there was heterogeneity of opinion about 
Lasso classification. Notably, Lassos are associated with 
actively replicating parasites [9, 10] that are infrequent in 
bradyzoites [4].  

Results from the entire data set, in Fig. 4, show that Blobs 
were the most frequent class to occur and were also most likely 
to be uniformly recognized by all operators. Arcs were the next 

 
    Figure 2. Mito tab of the GUI with numbers representing the sequential 

steps to be taken: 1) selecting the button to begin settings selection or the 

button to load a settings file, 2) adjusting the threshold setting, 3) adjusting 

the exclusion criteria, 4) classifying the object morphology, and 5) saving 

the output files. 

 

 
Figure 3. Manual classifications made by each operator for first 50 objects. 
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class, followed by Tadpole and then Lasso. The number of 
objects that could not be classified was comparable to that of 
Tadpoles. About equal numbers of classified Arcs were done 
so by all three as was done by two operators. Very few 
Tadpoles were classified as such by all three operators and 
there was no uniformity of opinion for selection of Lasso.  

TABLE I.  OPERATOR AGREEMENT COMPARISON 

Operator 1 VS 2 1 VS 3 2 VS 3 

Count 810 735 856 

Percent (%) 71 65 75 

 Visual inspection of classified objects showed that even 
within the same class, there was considerable diversity of 
morphologies. A comparison of how one operator agreed with 
another is shown in Table 1. The table shows that operator 1 
agreed with operator 2 and operator 3 for 71% and 65% of the 
objects that were classified, while operator 2 and operator 3 
agreed for 75% of the objects that were classified. Generalized 
Kappa as defined by Fleiss [17], computed for the 
classifications by the three operators was 0.51. Using the 
qualitative scale suggested by Landis [18], this value of Kappa 
indicates a moderate degree of agreement amongst operators. 

IV. DISCUSSION 

Previous findings suggest that bradyzoites within cysts are 
not completely dormant, rather are metabolically active with 
heterogeneous replication [4]. Investigation of mitochondrial 
function has the potential to inform about the metabolic 
activity of the bradyzoites, and thus their replication potential 
within the cysts [2]. Certain mitochondrial morphologies are 
associated with their functional state [9, 10], hence 
classification of the morphologies of mitochondria within 
bradyzoites into one of these shapes would inform about the 
metabolic state of that bradyzoite. The total number of cysts 
and number of bradyzoites within these cysts can be in the 
thousands [4], therefore automated means of classifying 
mitochondrial morphologies would be very beneficial in the 
study of the biology of these parasites which would be 
necessary to develop effective treatments for the chronic 
infection of this parasite. The purpose of this study was to 
develop an approach to facilitate manual expert classification 
of mitochondrial shapes which could be used as a training set 
in machine learning for the eventual goal of fully automated 
classification. We also were interested in determining which 
morphologies were easily classifiable, i.e. their class was 
readily apparent, and the congruence, i.e. degree of agreement, 
among different operators in classifying the same objects as 
this information would be valuable for the biologists as well as 
during development of automated approaches.                                

Our results showed remarkable congruence between 2 of the 
3 operators in classifying the objects, while the agreement 
among all 3 operators was somewhat modest. The three 
operators had varying degree of experience in terms of 
investigation of mitochondrial function, with one having 25+ 
years of experience, and the other two with less than 4 and 2 
years. Results suggest that, not surprisingly, Blobs are 
relatively easy to classify as the degree of congruence among 
operators with varying level of experience was the highest. It 
is noteworthy that although our prior work shows surprising 
level of activity in cyst encased bradyzoites, their metabolic 
activity is still expected to be at a very low level for a large 
fraction of them. Therefore, the lower incidence of identified 
Lasso and Tadpole morphologies was not surprising as these 
are associated with a more active parasite mitochondrion [9].   

In summary, results of our study provide information about 
the degree of congruence among manual classifiers in 
classifying mitochondrial morphologies which would be 
valuable in designing machine learning approaches for fully 
automatic classification by providing not only training sets, 
but also helping to establish bounds for the expected accuracy 
of automatic classification compared to manual operators.  
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