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Abstract— With an increasing number of robotic and pros-
thetic devices, there is a need for intuitive Muscle-Machine
Interfaces (MuMIs) that allow the user to have an embodied
interaction with the devices they are controlling. Such MuMIs
can be developed using machine learning based methods that
utilize myoelectric activations from the muscles of the user
to decode their intention. However, the choice of the learning
method is subjective and depends on the features extracted from
the raw Electromyography signals as well as on the intended
application. In this work, we compare the performance of five
machine learning methods and eight time-domain feature ex-
traction techniques in discriminating between different gestures
executed by the user of an EMG based MuMI. From the results,
it can be seen that the Willison Amplitude performs consistently
better for all the machine learning methods compared in this
study, while the Zero Crossings achieves the worst results for the
Decision Trees and the Random Forests and the Variance offers
the worst performance for all the other learning methods. The
Random Forests method is shown to achieve the best results in
terms of achieved accuracies (has the lowest variance between
subjects). In order to experimentally validate the efficiency
of the Random Forest classifier and the Willison Amplitude
technique, a series of gestures were decoded in a real-time
manner from the myoelectric activations of the operator and
they were used to control a robot hand.

I. INTRODUCTION

Over the last decades, an increased number of robotic and

mechatronic devices have been introduced in our day-to-day

life and new means of interacting with them have been tested.

In particular, nowadays there is a need for intuitive methods

of interfacing with such devices as the traditional interfaces

(e.g. buttons, hand-held controllers, vision and voice based

interaction systems) are often inconvenient, awkward in

social situations, and difficult to use [1]. To alleviate the

above mentioned issues, Muscle Machine Interfaces (Mu-

MIs) can be employed. These interfaces utilize myoelectric

activations to decode human intentions providing an immer-

sive interaction with various devices. Another advantage of

such electromyography (EMG) based interfaces is that they

can be hands-free, which allows the user to have a more

natural interaction with devices in different applications (e.g.

teleoperation of robot arms [2], control of prostheses).

The development of a mathematical model of the human

musculoskeletal system has been of great interest to bioengi-

neers and neurophysiologists. In 1938 a model was proposed

by Hill [3], which is known as the Hill-Type muscle model.
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Fig. 1. Real-time control of the New Dexterity five fingered robotic hand
using a muscle-machine interface that discriminates between appropriate
grasping postures, gestures, and actions.

This model employs several internal parameters, like, muscle

fiber length and muscle contraction velocity, which vary from

person to person. Due to these parameters, it requires a

complex calibration procedure to develop subject and muscle

specific models. To overcome this issue, researchers have

focused on machine learning based approaches [4].

Machine learning based MuMI intefaces can be catego-

rized as: i) classification based interfaces [5], [6] and ii) re-

gression based interfaces [7], [8]. The output of classification

based methods is a discrete decision on the intention of the

user (i.e., identifying the task to be executed), while regres-

sion methods provide a continuous prediction of the human

intention (i.e., deriving specific motion trajectories). The pro-

cessing pipeline for developing EMG based interfaces using

machine learning based methods consists of data acquisition,

signal filtering, feature extraction, and classification of the

patterns of the various gestures [9]. To remove the inherent

signal noise as well as the electromagnetic interference,

the acquired EMG signal is filtered [10]. It should also be

noted that the required processing should be completed in a

time efficient manner, to classify the acquired signals while

meeting the real-time requirement of practical applications.

The raw EMG data needs to be appropriately pre-

processed before extracting the features. The first step in

pre-processing involves filtering to remove unwanted noise

in the signal. In [11], the authors reduce the motion artifacts

in the signal using a bandpass filter (20 Hz - 500 Hz). After

filtering the acquired signals, the data is then segmented

to compute the feature set to be extracted from the raw
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Fig. 2. The grasping postures, gestures, and actions examined in this study. Subfigure a) shows the pinch grasp, subfigure b) shows the tripod grasp,
subfigure c) shows the power grasp, subfigure d) shows an open hand configuration with abducted fingers, and subfigure e) shows the rest state. The final
action executed in this study is co-contraction of all muscles, which is not shown as it can be achieved with many different gestures or postures.

EMG data. The segment length for calculating the features is

important as it affects the performance of machine learning

based intention decoding models [12]. According to previous

studies, a segment length smaller than 125 ms results in

high bias and variance in the calculated features, while a

segment length between 125 ms and 500 ms increases the

classification accuracy significantly by reducing the bias and

variance in the calculated features [13], [14]. However, for

real-time control of devices (e.g. control of prosthetic limbs

or robotic end-effectors), the response time of the interface

is required to be less than 300 ms [15].
Meaningful information can be extracted from the raw

EMG signals using feature extraction methods. These meth-

ods can be classified into three different categories, Time

Domain (TD) features, Frequency Domain (FD) features or

Time-Frequency Domain (TFD) features [16]. The TD fea-

tures are used to extract the information from the amplitude

of the EMG signals, FD features provide the information

regarding the Power Spectral Density (PSD), while TFD

features are a combination of amplitudes and the PSD of

the signal. According to past studies [17], [18], TD features

provide a more consistent performance over time than FD.
In [19], authors employed four TD features, namely, Mean

Absolute Value (MAV), Slope Sign Changes (SSC), Zero

Crossing (ZC), and Waveform Length (WL) for control

of a prosthesis using EMG signals. In [18], authors show

that RMS performs better as compared to MAV, maximum

amplitude (MAX), SSC, ZC, and WL as it provides a

quantitative measure for electrode selection. In [20], Anam et

al. classified individual finger movements using myoelectric

activations of the muscles of the forearm and TD features.

To achieve this, they employed Spectral Regression Discrim-

inant Analysis (a modified version of Linear Discriminant

Analysis) to reduce the dimensionality of the problem and an

Extreme Learning Machine to classify the finger movements.
After feature extraction, classification methods are used

to map processed EMG data associated with a specific

gesture to a control output. Random Forest (RF), K-Nearest

Neighbors (KNN), Support Vector Machines (SVMs), Linear

Discriminant Analysis (LDA), and Neural Network (NN)

Fig. 3. Placement of electrodes on the right human arm for EMG data
collection. The double dot with the connected line represents a double
differential EMG electrode. Ground is represented with a single dot and
is placed on the elbow where muscular activity is minimal.

are among the methods that have been implemented by

various authors [21]–[25] resulting in different success rates

and classification accuracies ranging between 70−90%. The

choice of learning method is subjective and depends on the

features extracted from the raw Electromyography signals as

well as on the intended application. Several factors that affect

this decision are the accuracy, type of input data needed, and

computational complexity of the different methods.

In this work, we compare the performance of five machine

learning methods and eight time-domain feature extraction

techniques in discriminating between different gestures ex-

ecuted by the user of an EMG based MuMI. The goal of

this study is to inform other researchers about the most

promising combinations of extracted features and machine

learning methods that offer excellent performance. To do this,

eight different TD features are extracted, while five different

classification based machine learning methods are employed

to develop gesture decoding models. Finally, an RF method-

ology based decoding framework is implemented so as to

control the New Dexterity five fingered, anthropomorphic

robot hand [26] in the execution of various postures and

gestures (as seen in Fig. 1).
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The rest of the paper is organized as follows: Section II

describes the apparatus used and the experimental setup.

The extracted features and the machine learning methods

employed are discussed in section III. Finally, section IV

presents the results, while section V concludes the work.

II. APPARATUS AND EXPERIMENTS

The study has received the approval of the University of

Auckland Human Participants Ethics Committee (UAHPEC)

with the reference number #019043. Prior to the study all

participants provided written and informed consent to the

experimental procedures. The experiments were performed

by 6 able-bodied subjects (age = 24± 3), four males and

two females. The experiments were performed by subjects

with their dominant hand. Four subjects (two males and two

females) were right hand dominant and two subjects (both

males) were left hand dominant.

A. Experimental Setup

The myoelectric activations for decoding the user inten-

tion were captured using a g.Tec g.USBamp bioamplifier.

The sampling rate used for the data acquisition was 1200

Hz and the acquired signal was bandpass filtered using a

Butterworth filter (5 Hz-500 Hz). A notch filter of 50 Hz

was applied to reduce the electric noise. For the experiments,

each subject was instructed to alternate between a rest state

and a gesture state. In total six gestures were recorded: i)

a pinch grasp, ii) a tripod grasp, iii) a power grasp, iv)

an open hand configuration with abducted fingers, v) co-

contraction of all muscles, and vi) rest state (see Fig. 2).

The data acquisition framework was implemented within

the Robot Operating System (ROS) [27], which offers the

necessary communication, testing, and visualization utilities.

The subjects were presented a visual cue at the beginning

and termination of each grasp in sequence on the computer

screen in the form of a three second countdown timer. To

facilitate the labeling of the acquired data for developing

supervised learning models, a software trigger was sent to

the data recording script to isolate the rest phase from the

gesture phase, when the visual cues were presented to the

subject. For each gesture, ten seconds of rest state were

recorded followed by ten seconds of gesture execution with

five repetitions each.

B. Muscle Selection

The myoelectric activations of eight muscle groups of the

hand and forearm were recorded using a bipolar electrode

setup. The first channel was placed at the back of the hand

focusing on the third dorsoral interossei while the second

channel was placed on the second dorsoral interossei to

distinguish between pinch and tripod gestures. The third

channel was placed on the opponens pollicis and the forth

channel was placed on abductor pollicis longus to capture

the activity of the thumb. Channels 5 and 6 were placed on

the flexor digitorum muscle site. Channel 7 was placed on

the extensor digitorum muscle site and channel 8 was placed

on the bicep brachii muscle site. The ground electrode was

placed on the elbow bone, where the myoelectric activity is

minimal. Fig. 3 shows the electrode placement on the right

human arm-hand system.

III. METHODS

This section describes the TD features extracted from the

raw EMG data, along with the different machine learning

methods used to develop intention decoding models.

A. Feature Extraction

In this study, raw EMG signals were acquired and filtered

(5 Hz - 500 Hz Butterworth filter) by the bioamplifier. These

signals were then segmented for feature extraction using a

sliding window of 166.67 ms with increments of 16.67 ms.

The size and the stride (increment interval) of the window

size were selected to optimize performance. The performance

of the decoding models depend on the window size and

the stride. The size of the window must not be too large

due to the real-time requirement of practical applications.

But, the window should be adequately large to avoid high

biases and variance [28]. In this work, the eight different TD

features were extracted from each EMG channel to develop

machine learning based models for decoding different hand

gestures. The features examined are as follows: Root Mean

Square Value (RMS), Waveform Length (WL), Zero Cross-

ings (ZC), Integrated EMG (IEMG), Mean Absolute Value

(MAV), Willison Amplitude (WAMP), Variance (VAR), and

Log Detector (LogD) [29]–[33]. More precisely, we provide

detailed descriptions:

1) Root Mean Square: The RMS of the EMG signal is one

of the most commonly used values in the TD. It represents

the square root of the average power of the signal for the

given time period.

2) Waveform Length: WL measures the complexity of

the signal. It represents the amplitude of the waveform,

frequency, and duration in a single parameter.

3) Zero Crossings: ZC provides rough FD information

and represents the number of times the signal crosses the

zero value in a given time period. ZC can also be used to

estimate the fatigue in the muscles.

4) Integrated EMG: IEMG is the summation of the ab-

solute values of the EMG signal amplitude. It is generally

used as an onset index to detect the muscle activity.

5) Mean Absolute Value: MAV can be calculated by

taking the average of the absolute value of the EMG signal.

It is similar to IEMG which detects the onset of muscle

activity. It also provides information regarding the muscle

contraction levels.

6) Willison Amplitude: WAMP represents the number of

times that the difference between EMG signal amplitude

among two consecutive values exceed a predefined threshold.

WAMP is related to the firing of motor unit action potentials

(MUAP) and the muscle contraction level.

7) Variance: VAR of the myoelectric activations measures

the power of the signal. Variance is the mean value of the

square of the deviation of that variable.
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TABLE I

SUMMARY OF THE FEATURES COMPARED WITH CORRESPONDING FORMULAE AND DESCRIPTIONS.

Feature Extraction

Methods
Formula Description

Root Mean Square
(RMS) RMS =

√
1
N ∑N

i=1 x2
i

Represents the
average power
of the signal.

Waveform Length
(WL) WL = ∑N−1

i=1 |xi+1 − xi|
Measure of

complexity of
the EMG signal.

Zero Crossings
(ZC)

xk < 0 && xk+1 > 0

‖‖

xk > 0 && xk+1 < 0

&&

|xk − xk+1|>Vt

Indicator of
fatigue in
muscles.

Integrated EMG
(IEMG) IEMG = ∑N

i=1 |xi|
Detects the

onset of
muscle activity.

Mean Absolute Value
(MAV) MAV = 1

N ∑N
i=1 |xi|

Measures
the contraction

level of muscles.

Willison Amplitude
(WAMP)

WAMP = ∑N−1
i=1 [ f (|xn − xn+1|)]{

1 x ≥ threshold
0 otherwise

Measures the contraction
level of muscles.

Variance
(VAR) VAR = 1

N−1 ∑N
i=1 x2

i

Measure of
EMG signal

power.

Log Detector
(LogD) LOG = e

1
N ∑N

i=1 log(|xi |)
Provides an estimate

of the muscle
contraction force.

8) Log Detector: LogD also provides an estimate of the

muscle contraction force.

A summary of all the different features that were calcu-

lated and examined in this study along with details regarding

the calculation of each feature can be found in Table I.

B. Machine Learning Methods

In this work, we chose to train a series of gesture decod-

ing models using five different machine learning methods,

namely: Decision Trees (DT), Random Forests (RF), Lin-

ear Discriminant Analysis (LDA), Support Vector Machines

(SVM), and Neural Networks (NN) [34]–[36]. For each

learning method examined, eight different decoding models

were developed using each one of the extracted features at

a time. The ability of the models to discriminate between

the different grasping postures and gestures was evaluated

employing the 5-fold cross-validation method.

IV. RESULTS

In this section, we present the gesture decoding perfor-

mance of each of the machine learning methods analyzed in

this study. To do this, we train different gesture decoding

models using each extracted EMG feature. In order to avoid

any biases in the accuracy values as a result of an imbalanced

dataset, it was ensured that the training set and the validation

set are balanced, i.e., the number of data points for each

grasp type were made to be equal in both the sets. The

presented results are the average values calculated using the

5-fold cross-validation procedure.
Table II shows the accuracy of the trained models in

decoding the selected gestures. The best and the worst

performing features are highlighted for each decoding model

(which are trained for each subject using only one feature at

a time). It can be noticed that the learning models developed

using only the WAMP feature perform consistently better as

compared to the decoding models developed using the other

features. MAV and IEMG have identical performances for all

the machine learning methods except for SVMs for which

MAV performs significantly better than IEMG. It can also

be noticed from Table II, that for DT and RF based models

ZC is the worst performing feature, while for LDA, SVM,

and NN, VAR has the worst performance.
As a result of a consistent performance, RF based models

were selected to demonstrate their real-time gesture decoding

capabilities using the WAMP feature. The decoded gestures

were mapped to the NDX-A* five-fingered anthropomorphic

robot hand [26]. The demonstrations for the real-time gesture

execution on the robot hand were recorded and the compiled

video is available in HD quality at the following URL:

www.newdexterity.org/FeatureExtraction
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TABLE II

GESTURE CLASSIFICATION ACCURACY FOR DIFFERENT MACHINE LEARNING MODELS TRAINED USING EACH EXTRACTED FEATURE. THE BEST AND

WORST PERFORMING FEATURES ARE HIGHLIGHTED FOR EACH SUBJECT. HIGHEST ACCURACY FOR EACH SUBJECT IS UNDERLINED AND

HIGHLIGHTED IN BLUE WHILE THE LOWEST ACCURACY IS HIGHLIGHTED IN YELLOW.

Machine
Learning
Method

Subjects RMS WL ZC MAV IEMG WAMP VAR LogD

D
ec

is
io

n
Tr

ee

1 95.18 94.14 83.15 95.26 95.26 96.21 95.18 95.22

2 86.46 87.43 86.08 83.25 83.25 84.12 86.47 84.61

3 84.32 84.49 71.33 82.66 82.66 85.06 84.34 81.57

4 88.41 92.55 71.34 90.50 90.50 91.43 88.42 89.33

5 92.74 92.58 90.61 93.20 93.20 95.79 92.75 93.06

6 92.87 91.36 83.34 94.09 94.09 91.71 92.87 92.65

R
an

do
m

Fo
re

st 1 94.76 95.12 84.95 95.05 95.21 96.55 94.81 95.62

2 90.15 85.92 84.16 90.35 90.54 83.79 91.62 90.28

3 83.83 86.17 73.90 84.06 84.34 85.09 83.79 82.97

4 90.86 93.36 72.82 90.44 90.24 92.52 90.33 89.32

5 93.82 94.48 91.23 93.62 93.69 96.40 94.71 93.62

6 93.12 87.99 86.12 91.09 95.17 90.63 94.68 87.86

L
in

ea
r

D
is

cr
im

in
an

t
A

na
ly

si
s

1 94.89 94.42 80.62 94.70 94.70 95.84 78.26 94.16

2 91.39 91.19 87.20 90.87 90.87 87.63 82.95 89.89

3 71.78 88.61 75.05 71.11 71.11 92.47 51.58 67.52

4 80.14 82.30 69.14 79.76 79.76 85.70 63.48 77.77

5 92.62 91.54 88.29 92.58 92.58 97.43 58.99 91.87

6 92.70 92.23 80.82 92.43 92.43 96.31 72.47 91.44

Su
pp

or
t

Ve
ct

or
M

ac
hi

ne

1 96.25 73.04 82.42 94.86 50.41 94.17 52.91 96.07

2 89.49 50.27 87.49 89.65 34.30 88.62 19.57 92.01

3 83.69 61.48 75.88 84.77 35.71 93.62 25.50 83.01

4 91.18 61.36 70.86 91.39 46.47 91.06 28.24 91.88

5 95.18 71.19 88.31 95.62 49.21 96.46 51.63 95.46

6 94.53 70.59 83.03 89.87 43.36 93.02 32.30 89.52

N
eu

ra
l

N
et

w
or

k 1 81.00 79.98 69.38 80.78 80.76 80.69 69.14 80.04

2 77.39 77.58 72.92 74.68 77.03 71.58 61.78 78.25

3 45.21 71.36 69.51 39.51 41.95 80.98 20.76 35.60

4 60.16 63.01 61.96 56.72 59.97 72.51 32.55 54.76

5 72.66 80.33 74.55 80.32 74.40 82.34 40.66 69.27

6 79.99 81.83 72.97 79.08 79.74 79.81 47.46 76.24

V. CONCLUSION

In this work, we compared the performance of five ma-

chine learning methods and eight time-domain feature extrac-

tion techniques in discriminating between different grasping

postures and gestures executed by the user of an EMG based

Muscle Machine Interface. The postures and gestures con-

sidered were: a pinch grasp, a tripod grasp, a power grasp, an

open hand configuration with the fingers abducted, a muscle

co-contraction state, and the rest state. From the results, it can

be seen that Willison Amplitude performs provides the best

results for all machine learning methods compared in this

study. It can also be seen that the Zero Crossings achieves

the worst results for the Decision Trees and the Random

Forests and the Variance offers the worst performance for

all the other learning methods. Finally, to experimentally

validate the efficiency of the Random Forest classifier and

the Willison Amplitude feature extraction technique, a series

of gestures were decoded in real-time from the myoelectric

activations of a user and they were used to control the New

Dexterity NDX-A* humanlike robot hand.
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