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Abstract— Recognising and classifying human hand gestures
is important for effective communication between humans and
machines in applications such as human-robot interaction,
human to robot skill transfer, and control of prosthetic de-
vices. Although there are already many interfaces that enable
decoding of the intention and action of humans, they are either
bulky or they rely on techniques that need careful positioning
of the sensors, causing inconvenience when the system needs
to be used in real-life scenarios and environments. Moreover,
electromyography (EMG), which is the most commonly used
technique, captures EMG signals that have a nonlinear rela-
tionship with the human intention and motion. In this work,
we present lightmyography (LMG) a new muscle machine
interfacing method for decoding human intention and mo-
tion. Lightmyography utilizes light propagation through elastic
media and the change of light luminosity to detect silicone
deformation. Lightmyography is similar to forcemyography in
the sense that they both record muscular contractions through
skin displacements. In order to experimentally validate the
efficiency of the proposed method, we designed an interface
consisting of five LMG sensors to perform gesture classification
experiments. Using this device, we were able to accurately
detect a series of different hand postures and gestures. We
also compared LMG data with processed EMG data.

I. INTRODUCTION

The need for effective human-machine communication

is becoming more important due to the rapid development

of intelligent devices that can be used in a broad range

of applications in modern society. Numerous studies have

focused on this topic and plenty of interfaces have been

proposed to enhance communication between the humans

and machines, improving accuracy, robustness, usability,

and intuitiveness of interactions. The available interfaces

are mainly categorised into hand-held controllers, vision-

based controllers, voice based controllers, and wearable

interfaces. Hand-held controllers such as joysticks are the

most widely-used interfaces; however, they can be bulky,

fatiguing, and usually are not suitable for portable devices.

Another disadvantage of hand-held interfaces is that they are

not suitable for the control of prosthetic devices. On the other

hand, vision-based methods are usually quite convenient in

terms of usability, but they suffer from the same portability

and compactness issues, while in the case of voice based

interfaces, ambient noises limit their applicability [1].
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Fig. 1. The proposed lightmyography armband that consists of five sensing
modules (LMG sensors).

Wearable interfaces that capture the human kinematics

or the muscular activity offer suitable solutions for the

control of robotic and prosthetic devices. Such interfaces can

be developed using for example electromyography (EMG)

or forcemyography (FMG) sensing modules [2]–[4]. These

are non-invasive techniques that focus on recording the

muscle contractions on the surface of the skin. EMG based

interfaces use the electrical activity of the human muscles

to decode the user’s intent. EMG based interfaces have

been successfully used for applications such as using virtual

keyboards [5], controlling exoskeletons [6], and operating

prosthetic devices [7], etc. FMG based interfaces have also

been investigated in several studies as an alternative to EMG

based interfaces [8], [9]. Both techniques offer intuitive,

hands-free, non-fatiguing interaction with computers and

intelligent machines such as prosthetic devices.

EMG based interfaces typically require sophisticated elec-

tronics for data acquisition and processing, utilisation of

gel-based electrodes, proper selection of the muscle groups,

and proper positioning of the EMG sensors, rendering their

integration in portable devices challenging. [10], [11]. To

solve this issue and to create portable and practical muscle

machine interfaces, several researchers have focused on

developing appropriate armbands that incorporate numerous

EMG or FMG sensors in a compact form. [12]–[14].
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Fig. 2. A drawing demonstrating the working principle of lightmyography.
Light gets emitted from an LED and transmitted through an elastic medium.
A photodetector amplifier is used to detect the light that is reflected on the
skin surface. On the right side of the image, the movement of the skin
due to muscle contraction, during the execution of a gesture, compresses
the silicone medium and changes the intensity of the light received by the
photodetector amplifier.

(a) (b) (c)

Fig. 3. Different components of one of the device’s LMG sensors:
a) a silicone element molded on a 3D printed base, b) electronic parts
of the sensing module consisting of a small RGB LED and a OPT101
photodetector amplifier, and c) the electronic parts are inserted into the
silicone module to complete the assembly of the LMG sensor.

In this work, we present a new muscle-machine intefacing

method that we call lightmyography (LMG) and we create

a wearable, lightweight LMG armband that can allow for

decoding of human gestures (see Fig. 1). Most of the parts of

the proposed armband are either 3D printed or molded using

silicone rubber. The device consists of five LMG sensing

modules, each housing an LED and a photodetector. To

validate the efficiency of the LMG method and the proposed

armband, the device has been employed in decoding five

different gestures and its performance has been compared

with the performance of an EMG based interface that uses

a commercially available bioamplifier. The results demon-

strate that the LMG based muscle machine interface offers

promising performance and has the potential to become an

efficient solution for the intuitive control of robotic and

bionic devices.

The rest of the paper is organized as follows: Section II

presents the working principle of lightmyography, the design

of the armband, and the methods used, section III explains

the experiments conducted and the methods used to evaluate

the performance of the armband in decoding various hand

gestures. Section IV discusses the results, while section V

concludes the paper.

II. WORKING PRINCIPLE, DESIGN, AND METHODS

In this section, we present the working principle of light-

myography as well as the materials and the methods that we

used to develop the LMG based arm band.

Fig. 4. Exploded view of the device. The proposed device consists of five
sensing modules connected together in a circular shape by using silicone
rubber elements. An arduino nano is attached on top of one of the sensing
modules to make the device both portable and stand alone. Metalic pins are
connecting together the different LMG sensors and silicone rubber elements
so as to make adding or removing modules easier. Finally, rubber elements
provide the required pretension for each LMG sensor.

A. Working Principle of Lightmyography

The design of the device is based on the fact that the

change in the position and orientation of a reflecting surface

can change light intensity at a fixed point away from the

reflective surface. So, by having a flexible compressible

medium between a reflecting surface and a photodetector,

it is possible to detect movements in the reflecting surface.

In the proposed design, an LED sends a light signal to

arm skin through a compressible silicone medium. Then, a

photodetector amplifier receives the reflection of the light

signal from the skin. However, the gain of the photodetector

amplifier changes when the target muscle under the skin

moves and compresses or decompresses the silicone medium.

Fig. 2 shows a schematic of how lightmyography works.

B. Design of the Lightmyography Based Wearable Band

For the design of the armband we tested two different

silicones with different optical densities (Smooth-On Dragon

skin 10 and Solaris). With Solaris, the gain of the pho-

todetector amplifier was higher, and the changes were more

detectable due to its lower optical density. Hence, in the

final design of the LMG armband Solaris was used as the

medium between the LED and the skin. For the photode-

tector amplifier, we use OPT101 from Texas instruments. In

order to increase the amount of achievable compression in

the silicone medium, and to decreases the relative moving

distance between the skin and sensors, a 3D printed base is

attached to the silicone part. This has been done by molding

part of the silicone part inside the 3D printed base. Then,

we added rubber bands between the 3D printed base and the

PCB to keep the silicone medium pretensioned. This reduces

the synced movement of skin and the sensors on the PCB.

Fig. 3 shows one module of the device.
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Fig. 5. The placement of the optical armband and the EMG electrodes.
The ground of the EMG bioamplifier is placed at the elbow where muscular
activity becomes minimal.

The device consists of five modules to monitor different

muscle groups at the same time during gesture execution.

The modular design of the device makes it possible to add

or remove modules easily if required. It is achieved by using

elastic elements made out of Smooth-On dragon skin 10 to

connect the different modules of the LMG band with the help

of metallic pins. An exploded view of the device is presented

in Fig. 4.

III. EXPERIMENTS

In order to evaluate the performance of the proposed LMG

band interface, gesture execution data was collected from

nine subjects (ages = 25 year ± 4 year, five males and four fe-

males, and upper forearm circumference of 25 mm ± 4 mm).

Two subjects (both males) were left-hand dominant, while

seven subjects (three males and four females) were right-

hand dominant. The study was approved by the University of

Auckland Human Participants Ethics Committee (UAHPEC),

reference number #019043. Prior to the study, participants

provided written and informed consent to the experimental

procedures.

A. Data Collection

During the experiments, the subjects were asked to per-

form five different gestures: rest, power, pinch, tripod, and

finger extension. The data collection procedure for each

gesture started with 10 seconds of rest followed by 10

seconds of gesture execution, repeating five times. Visual

cues in the form of a three second counter were provided

to the subjects on the computer screen to switch between

the gesture and the rest phases. A software trigger was

sent to the data recording script to label the gesture and

the rest phases for developing machine learning models

using supervised learning schemes. For data collection, the

LMG armband was placed in the upper half of the forearm

where the majority of the muscle groups (extensor digitorum,

Fig. 6. Confusion matrix for decoding the gestures using LDA based
model trained using the two different sets of data. The matrix presents the
confusion in classifying gestures over five folds for Subject 9. All the values
in the confusion matrices are percentages.

flexor digitorum superficialis, flexor digitorum profundus,

and flexor pollicis longus) responsible for the movements

of the digits are located [15]. In order to compare the

performance of the armband with the state-of-the-art EMG

bioamplifiers, data from five bipolar EMG channels was

collected at the same time as the data from the armband

using g.tec’s g.USBamp bioamplifier. For the EMG data, a

sampling rate of 1200 Hz was used, and the acquired data

were filtered using a Butterworth bandpass filter of 5 Hz and

500 Hz. The machine learning models were developed using

the Root Mean Square (RMS) feature, which was extracted

from the raw EMG signals. For extracting the RMS value, a

moving window of 170 ms was used with a stride of 17 ms.

Fig. 5 shows the placement of the armband and the EMG

electrodes. The RMS value is defined as:

RMS =

√
1

N

( N

∑
k=1

(xk)2
)
, (1)

where N is the size of the window applied to the data.
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Fig. 7. The LMG and EMG values during pinch, power, tripod, and extension gesture. Subfigure a) shows the activation values for the LMG sensors,
subfigure b) shows the raw EMG activations, while subfigure c) shows the processed EMG signals (RMS values).

TABLE I

ACCURACY VALUES (EXPRESSED AS PERCENTAGES) FOR THE GESTURE

DECODING MODELS DEVELOPED USING LIGHTMYOGRAPHY (LMG)

AND ELECTROMYOGRAPHY (EMG) DATA

Data Source LMG EMG

Learning Model LDA SVM RF LDA SVM RF

Subject 1 94.68% 93.99% 89.22% 87.32% 86.54% 93.63%

Subject 2 82.16% 83.49% 81.45% 76.30% 78.93% 82.36%

Subject 3 90.48% 93.17% 88.55% 93.18% 96.05% 94.58%

Subject 4 71.83% 78.12% 85.56% 64.63% 60.15% 88.70%

Subject 5 86.20% 88.90% 84.02% 77.52% 82.51% 82.64%

Subject 6 81.56% 85.46% 83.86% 77.43% 93.85% 92.14%

Subject 7 92.33% 95.61% 96.16% 71.49% 86.46% 87.94%

Subject 8 88.50% 88.09% 89.84% 78.71% 76.48% 89.49%

Subject 9 92.00% 91.54% 90.79% 74.71% 87.26% 88.08%

B. Classification Methods

Before developing the machine learning models, it was

made sure that all the five classes of different gestures (rest,

power, pinch, tripod, and extension) are balanced. Since the

classes are balanced, the chance performance (in case of

random guessing the gesture class) for the learning algorithm

should be ∼ 20%.

To compare the performance of the armband with the

EMG bioamplifier, three different machine learning tech-

niques were used, namely: i) Linear Discriminant Analysis

(LDA) classifier [16], ii) a Support Vector Machine (SVM)

based multiclass classifier [17], and iii) a Random Forest

(RF) classifier [18]. The SVM based classifier was developed

using a nonlinear RBF kernel. The classifiers were trained

and validated using the 5-fold cross validation method.

IV. RESULTS

This section presents the gesture decoding accuracy for

the LMG band and the EMG bioamplifier. To do this, we

trained machine learning models on two different sets of

data. The first set was developed using the data from the

LMG band, while the second set using the RMS feature

extracted from the raw EMG data. For each set, three

different machine learning schemes were employed to decode

the human intention (as discussed in Section III-B).

Table I presents the gesture decoding accuracies achieved

using different machine learning schemes on each of the

sets. Out of the two sets, the models trained on the data

using the LMG armband perform better than those trained

using feature extracted EMG. Fig. 6 presents the confusion

matrices for decoding the gestures using two different in-

terfaces and an LDA based classifier. The results presented

are from Subject 9 (see Table I) over five folds of cross

validation. From the confusion matrices, it can be seen that

the inter-class mis-classifications while discriminating the

gestures decoded from the LMG data are significantly lower

as compared to when decoded using the feature extracted

EMG data. An example of the LMG, raw EMG, and feature

extracted EMG recordings is shown in Fig. 7.

V. CONCLUSION

In this work, we introduced a new type of muscle ma-

chine interfacing method that we call lightmyography and

we presented a wearable, lightweight LMG based armband

for muscle-machine interaction. The proposed armband is

composed of 3D printed parts as well as parts molded

using silicone rubber. It consists of five sensing modules,

each housing an LED and a photodetector. To validate the

efficiency of the LMG method and the proposed armband, the
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device has been employed in decoding five different gestures

and its performance has been compared with the performance

of an EMG based interface that uses a commercially available

bioamplifier. In the results section, it can be noticed that the

models trained and tested on the LMG data perform better

than those trained and tested on the EMG data.

Regarding future directions for the proposed armband, we

plan to add inertial measurement units (IMUs) to achieve

better decoding performance by identifying the orientation

of the user’s arm. During the experiments, it was noticed

that the tightness of the band around the arm significantly

affects performance, so the next version of the armband will

have adjustable band dimensions as well as adjustable pre-

tension in each of the sensing modules. Also, casing will be

designed around each sensing module to reduce the effect of

ambient light on the LMG based decoding capabilities. We

also plan to investigate the impact of the wavelength of the

emitted light in different silicon mediums. A comprehensive

sensitivity analysis and a parametric study of the physical

design characteristics and the required data collection, pro-

cessing, and human intention and motion decoding systems

will also be conducted.
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