
 

 

 

Abstract— A code blue event is an emergency code to 

indicate when a patient goes into cardiac arrest and needs 

resuscitation. In this paper, we model the binary response of 

a intensive care unit (ICU) patients experiencing a code-

blue event, starting with vital time-series data of patients in 

12 ICU beds. Our study introduces day-of and day-ahead 

risk scoring models trained against ground truth 

information on per-patient-per-day code-blue events, 

starting with multi-variate vital-time-series-sequences of 

varying durations with a plurality of engineered features 

capturing temporal variations of these signals. Actionable 

events, including code-blue events, aggregated by patient by 

day were predicted on the day-of or day-ahead with an 

overall accuracy of over 80% in our best models. Such 

models have potential to improve healthcare delivery by 

providing just-in-time alerting, enabling proactive and 

preventative clinical interventions, through continuous 

patient monitoring. 

BACKGROUND  

The rising hospital utilization rates, in ICUs and ERs 

around the country, has brought about a need for clinicians to 

develop statistical awareness and thinking as yet another 

critical judgment skill they bring to their patients' bedsides. 

Intelligent monitoring and control (IMC) can help with the 

interpretation of observed patient behaviors based on 

monitored physiological / vital signs and to plan for reasoned 

responses to observed events.   

Almost half (48%) of hospital deaths occur in 

unmonitored patients [1] of which  more than one-third are 

over 75 years of age [2]. Smart Electronic Medical Record 

(EMR) systems, precursors to AI-driven models, have been 

shown to reduce the risk of patient morbidity and mortality up 

to 50% [3] with studies on tele-ICUs reporting up to a 26% 

reduction in ICU mortality [4]. Thus, real-time AI systems are 

poised to profoundly impact patient care through continuous 

patient monitoring and risk stratification. While we aren’t the 

first to attempt intelligent monitoring of patients [3-9] our use 

of high-performing AI models trained on our novel outcomes-

associated vital time-series database will enable predictive 

monitoring of patient health.   

The cost of ICU care is estimated at USD 26.2 billion a 

year [1]. With health expenditure escalating rapidly in the US, 

it is quintessential to be able to estimate ICU utilization in 

order to optimize management of care.  There is a need for 

predictive models that can be utilized to exercise optimal 
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staffing strategies and to estimate the impact of treatment 

approaches and patient care management paradigms that 

correlate with shortened length of stay (LoS)[2]. 
 

METHODS 

Data Acquisition 

Anonymized patient-specific vital time-series data from 

patients in 12 ICU beds at The Brooklyn Hospital (TBH) were 

acquired by leveraging HL7 feeds from a healthcare data 

interchange service (see Figure 1), under IRB approval, 

anonymizing patient identifiers at source. The vital time-

series data were recorded in a manner analogous to the 

MIMIC-III dataset [10]. The universe of sensors in hospital 

beds included BluPRO P225F SpO2 sensors, Cap-ONE TG-

920P CO2 Sensors, iNIBP blood pressure devices, and 

CardioFax-G Electrocardiographs (ECG-2550), which record 

of heart rate, blood pressure, respiratory rate, and oxygen 

saturation on a continuous basis.  

 
Figure 1. The architecture diagram of how we collect vitals  
data from sensors.  
 
Table 1.  Descriptive statistics on our dataset, stratified by 

period of data acquisition. 

Mon

th 

Total 

records 

# of 

pts 

Average 

#   obs 

per pt. 

Total  

# of 

events 

 

Avg 

daily 

# of 

events 

 

Mar-

July 

2,190,077 1,407 1,557 4421 

 

29 

Aug-

Sep 

2,014,738 961 2,096 1663 

 

27 

Oct-

Dec 

2,855,911 1,345 2,123 1464 

 

24 

Jan-

Feb 

1,597,978 837 1909 1363 24 

 

Lyniate Corepoint, a modular integration engine, is used 

to collate every patient’s time-series data acquired from the 
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vital sensors as HL7 streams and insert these records into a 

SQL database. An ingestion service streams new records from 

SQL into a Kafka topic on Google Cloud, every 2 minutes. A 

Spark streaming application listening to this topic cleanses 

this data before saving into a table on the BigQuery data lake 

service on Google Cloud. Data is fetched from source in a 

batch every ~142 secs whereas each observation of vitals in 

data in our time-series were available at a sampling rate of ~1 

minute. The size of our data set in terms of records by time-

range includes number of patients, vital observations over 

time, and the average count of observations per patient, 

aggregated across different time periods of data acquisition 

are shown in Table 1.    

Model-Ready Dataset Preparation and Ground Truth: 

Labeled ground-truth/outcome data regarding high-risk 

events that occurred in the ICU, including code-blue events, 

was acquired monthly based on patients that visited each of 

TBH’s 12 ICU beds. These ground truth events were time-

stamped precisely only to the day of the actual event.  We left-

joined patient-specific ground truth back to vital time-series 

tables in our BigQuery data lake, based on the date of the 

recordings and the anonymized patient identifiers. We then 

split the data into timeframes based on the month of the record 

i.e. March-July, Aug-Sept and Oct-Dec, etc. The data 

collected from March-July was used to train our model while 

data from Aug-Sept was used for validation purposes. Data 

from Oct 2020 was considered as out-of-sample testing data. 

Actionable Clinical Event Modeling:  We define an actionable 

event as any event where a clinician responds to an urgent 

patient need; as such, this included code-blue events but other 

events that prompted urgent clinical attention, as well. We 

developed a universe of models to score individual patient 

risk and report early-warnings or instantaneous alerts 

regarding their state of physical health. As such, the goals of 

each model were to predict the binary response of a given 

patient experiencing a code-blue event.  The latter was 

modeled on an instantaneous level and aggregated on the 

patient-day level and the patient-level for the purpose of 

reporting alerts as well as for evaluating model performance.   

We developed several iterations of predictive code-blue 

response models, all of which were trained with Mar-July 

vital-time-series data with matched ground-truth events, and 

validated and tested with the remaining data, as described 

previously. A plurality of model types were explored: 
a) Cross-sectional model:  Instantaneous (day-of) risk 

scoring model were trained on per-patient-per-day code-blue 
information, with patient-day-level aggregation for reporting.  
This model had no bearing for the trends in the vital signatures 
but merely relied on the instantaneous observed values of a 
plurality of vitals and related these data to the response of 
code-blue events observed.  

b) Two types of vital-time-series-sequence models were 
built for different sequence lengths (10, 50 and 100 
observations per sequence), aggregated features of these time-
series sequences and their first order derivatives: i) Day-of 
actionable event risk scoring model; and ii) Day-ahead and 
day-of event risk scoring model  

Table 2 and 3 provide list each of the models developed and 

evaluated in this study.   

Table 2. Day-of code-blue risk models.  

Model Method 

Distributed 

Random 

Forest(DRF) 

 

XGboost(XGB) 

 

Cross-sectional model with time-series 

aggregation to the patient-day level for 

performance reporting 

XGboost machine learning model with 

aggregation to the patient-day level for 

performance reporting 

Gradient 

Boosting (GB) 
Gradient Boosting machine learning 

model using sequence-level features, with 

sequence length=50 

Deep neural 

network (DNN) 

Deep neural network with sequence 

length=100 

XGB-1 XGB machine learning model with 

Sequence length=10 

XGB-2 XGB machine learning model with sequence 

length=10 and has features after feature 

selection approach 

Table 3. Day-ahead and day-of code-blue risk model 
Model Method 

LSTM LSTM deep learning model with 5 layers that 

included LSTM, drop-out, and dense layers, 

built using tensorflow/keras with 100 nodes in 

the first LSTM layer and 50 nodes in a second 

LSTM layer.  

Our day-of as well as day-ahead temporal sequence models 

for actionable event risk scoring contained statistically 

aggregated features (eg: min, max, mean, median, first & 

last value, mode, skew, kurtosis, 25th & 75th percentile, 

standard deviation and variance) of time series sequences 

from original vitals and their first order derivatives.  

Model Optimization: For instantaneous vital signal level, 

we optimized the threshold using receiver operator 

characteristics (ROC) analysis. The ROC curve was created 

by plotting the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold settings. The ROC 

curve helped identify the threshold where the TPR is high 

and FPR is low i.e. misclassifications are low. There we 

found the optimal probability threshold where we got the 

highest sensitivity and specificity figures. For patient-day 

level models, we applied the same ROC analysis approach; 

however, in addition to optimal threshold, we calculated the 

optimal count of positives for patient-per day aggregation. 

The optimal count of positives is defined as the point at 

which balanced sensitivity and specificity was maximized. 

In combining these two approaches, we identified the best 

optimal threshold and optimal count of positives at which 

we got best sensitivity and specificity figures. 

                                    RESULTS 

Tables 4 through 6 summarize our model performance 

metrics, for each model and each dataset group utilized for 

training, validation and testing.  
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Table 4.  Sensitivity, specificity, precision of per-patient-per-

day code-blue risk prediction, for each model in our study, for 

each data subset. DRF, XGB, GB, DNN, XGB-1 and XGB-2 

predict day-of events, whereas LSTM predicts day-ahead and 

day-of events.  

ID Metric 03/20-

07/20 

08/20-

09/20 

10/20-

12/20 

12/20-

01/21 

02/21 

 

DRF 

 

 

Sensitivity 

Specificity 

Precision 

 

Sensitivity 

83.09                    

83.23 

34.90 

60.24 

34.50      

73.29 

8.56 

64.50 

49.67      

60.57 

6.12 

61.58 

39.42 

64.36 

7.87 

50.00 

45.00 

59.45 

7.12 

61.67 

XGB Specificity 60.65 56.23 56.55 61.09 53.11 

 Precision 14.20 9.65 6.84 9.02 8.33 

 Sensitivity 71.24 48.22 64.79 66.25 74.00 

GB Specificity 67.54 57.38 50.70 32.21 30.49 

 Precision 19.64 7.85 6.61 7.17 7.02 

 Sensitivity 64.04 54.79 66.18 47.61 46.15 

DNN Specificity 64.09 52.41 50.20 52.00 52.32 

 Precision 16.85 8.00 6.84 6.68 5.71 

 Sensitivity 70.93 63.82 71.52 43.75 55.36 
XGB-1 Specificity 70.30 47.78 51.10 65.89 63.95 

 Precision 20.45 8.19 7.19 8.99 9.45 

 Sensitivity 73.43 59.79 67.55 40.62 48.21 
XGB-2 Specificity 73.37 54.79 57.63 70.70 68.93 

 Precision 22.89 8.81 7.79 9.65 9.54 

 Sensitivity 66.24 67.35 67.21 54.07 71.60 

LSTM Specificity 65.63 33.36 37.02 56.50 36.17 

 Precision 28.65 11.74 8.73 12.20 10.21 

 

Table 5.  Sensitivity, specificity, precision for patient level 

code-blue prediction.  

ID 

 

 

DRF 

Metric 

 
Sensitivity 

Specificity 

Precision 

03/20-

07/20 

90.13   

92.97 

86.70 

08/20-

09/20 

50.00 

72.62 

35.71 

10/20-

12/20 

76.51 

60.73 

28.29 

12/20-

01/21 

54.94 

67.69 

25.38 

02/21 

 

75.92 

61.92 

31.06 

 Sensitivity 74.34 78.12 78.03 62.63 81.48 

XGB Specificity 60.86 57.03 57.05 65.49 60.66 

 Precision 49.13 35.61 26.89 26.63 31.88 

 Sensitivity 80.50 65.40 84.67 78.57 91.30 

GB Specificity 65.03 57.61 41.49 27.62 30.20 

 Precision 58.68 35.13 26.64 22.82 28.76 

 Sensitivity 73.22 76.31 86.44 66.03 80.00 

DNN Specificity 61.58 52.92 44.60 42.62 47.78 

 Precision 56.88 38.53 30.63 25.00 32.18 

 Sensitivity 81.50 84.37 84.84 55.40 80.00 
XGB-1 Specificity 76.45 51.57 55.35 73.53 66.19 

 Precision 64.67 35.43 28.94 30.67 36.03 
XGB-2 Sensitivity 81.50 80.00 82.57 53.01 72.00 

 Specificity 80.97 58.07 60.06 76.84 74.76 

 Precision 69.38 37.53 30.70 32.59 40.44 

 Sensitivity 84.64 88.19 88.63 66.20 84.00 

LSTM Specificity 60.79 29.38 35.06 56.74 44.28 

 Precision 53.44 28.40 22.63 24.44 26.41 

 

Table 6.  Sensitivity for day-ahead, patient-day level code-

blue prediction. 

ID 03/20-

07/20 

08/20-

09/20 

10/20-

12/20 

12/20-

01/21 

02/21 

LSTM 62.95 65.30 70.58 50.00 78.57 

DRF            53.52   30.67 54.36 67.44 64.28 

XGB 57.30 60.00 62.10 60.46 78.57 

GB  63.27  48.92 67.34 73.52 76.00 

DNN 54.77 50.00 62.36 48.48 80.00 

XGB-1 46.98 63.26 64.70 61.90 67.85 

XGB-2 46.98 57.82 64.70 47.61 57.14 

Optimization of Probability Thresholds: For each model, 

we identified an optimized probability threshold that 

yielded the highest balanced sensitivity and specificity in 

the training cohort. Figure 2 plot sensitivity vs specificity 

for the XGB-2 model, as an example, with the optimal cut-

off being the threshold corresponding to the intersection of 

the sensitivity and specificity curves.   

 

Figure 2.  Operating characteristics for the XGB-2 model.   

DISCUSSION  

Nurse to patient ratios in most healthcare systems range 

from 5:1 to 10:1, on average a  patient’s health is typically 

assessed every 4 to 6 hours, and survival rate after clinical 

intervention signified by conventional code blue alarms is less 

than 20% [14]. Centralized continuous monitoring solutions 

that provide early alerting for ID & Strat of declining health 

status will enable early intervention by staff [12,13]. Smart 

EMR systems, precursors to AI, have been shown to reduce 

patient risk of mortality or morbidity by half and in some 

cases such systems have accurately identified high-risk events 

that doctors missed. Some studies report that remote 

monitoring alone across units dropped ICU mortality by 26% 

and overall hospital mortality by 16% [11]. In a survey, ICU 

staff demanded improved alarm management for future 

patient monitoring systems and clinical decision support 

systems based on AI was considered useful [15]. 

Barriers to timely intervention today: To enable proactive 

intervention at the right moment to avert a catastrophic 

decline in patient health, clinicians must recognize when a 

patient is in a high-risk state, which may not be immediately 

apparent from mere visualization of vital signals. Although 

central monitoring stations to monitor comprehensive patient 

information remotely can increase workflow productivity,  

the lack of independent predictive value based on the 

correlation of vital signatures and actual outcomes limits the 
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ability to predict code-blue events sufficiently in advance to 

stage timely interventions that may avert mortality.   

Enhancing current treatment paradigms: Central remote 

patient monitoring is at best reactionary, even though it 

reduces time to effective response. By advancing the state of 

the art to predictive care management, our innovative ID & 

Strat algorithm has potential to lower mortality rates, reduce 

readmissions, and improve timeliness of discharge for ICU 

patients by improving treatment effectiveness and reducing 

median length-of stay. We anticipate our technology trigger 

fewer false alarms in the ICU vis-à-vis threshold-driven alerts 

that are based on individual vital signatures which are less 

holistic than our multivariate approach, thus reducing burn-

out and fatigue amongst first responders and healthcare  staff 

who often find themselves responding to false alarms[15,16]. 

AI-driven alerts may facilitate early warning systems with the 

potential to avert adverse events before they occur [17].Other 

studies have also explored methods to predict code-blue 

events as well as other high-risk events that prompt urgent 

clinical attention. In one example, authors have described 

machine learning models that preemptively flag patients who 

are likely to go into cardiac arrest and allege performance 

superior to the Modified Early Warning Score used by 

hospitals [18-20]. The solution we present in this manuscript 

however is agnostic to specific clinical conditions.   

 

CONCLUSION 

We describe a novel machine learning solution that 

predicts code-blue and other high risk events which require 

clinical intervention in the ICU starting with patent-specific 

vital signatures. This gives ICU staff the ability to intervene 

before the patient becomes critical, thus saving more lives. In 

our study based on large scale medical time series datasets of 

patient-specific vital signs in ICU settings from TBH, from a 

diverse population of adults and pediatric admissions, we 

were able to achieve out-of-sample sensitivity of over 80% in 

identifying patients experienced an actionable event occurred 

in ICUs, with up to 70% sensitivity to patient-specific 

inpatient days associated with such events.  The precision of 

our models was low and there was variation in performance 

from month-to-month, however, we anticipate this to improve 

with the use of a more substantive training dataset. The 

universe of sensors in ICU beds in this study did not include 

continuous body temperature monitors. Therefore, the per 

patient time series vital data acquired for training, validation, 

and testing lacked a feature that could be informative of a 

patient’s current condition and thus, improve the models’ 

predictive performance. Our long term vision is for care 

providers, care managers, and payers to utilize the predicted 

and derived states for a number of health and wellness related 

applications.  We believe that our patient-specific risk scoring 

models may perform equivalently in other hospital settings 

than ICU’s (eg. ERs, inpatient rooms) and post-discharge 

wearables-based monitoring scenarios. The latter remains to 

be explored pursuant to further data collection. 
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