
A Novel Adaptive Fuzzy Deep Learning Approach for Histopathologic
Cancer Detection

Xiankun Yan1, Jianrui Ding2 and H. D. Cheng1,∗

Abstract— We proposed a novel model that integrates the
fuzzy theory and group equivariant convolutional neural net-
work for histopathologic cancer detection. The proposed fuzzy
group equivariant convolutional neural network consists of
the convolutional network, a novel fuzzy global pooling layer,
and a fully connected network. In the fuzzy global pooling
layer, the generated feature maps are transferred into the
fuzzy domain by two different fuzzification methods. One of
the fuzzy feature maps exploits the uncertainty information
of histopathologic images, and the other keeps the original
information. Furthermore, the fuzzy feature maps are processed
by using Min-max operations. The experiments verified that the
proposed method could always find the maximum fuzzy entropy
and exploit and present the uncertainty of histopathologic
images well. The experiments using the benchmark dataset
demonstrate that the proposed model becomes more accurate
and outperforms the existing models including the benchmark
models. Compared to the benchmark model with 89.8% of
accuracy, 96.3% of AUC, and 0.260 of negative log-likelihood
loss, the proposed model obtained 91.7% of accuracy, 97.2%
of AUC, and 0.214 of negative log-likelihood loss.

I. INTRODUCTION

Recently, high-resolution histopathology images that offer
a more detailed overview of the disease have been employed
for clinical cancer diagnosis. However, as the ‘golden stan-
dard’ in cancer diagnosing, histopathology image segmenta-
tion and classification cost a lot of time and labor, and it is
difficult to annotate the images even for pathologists since
there is no clear definition and criteria for annotating normal
or cancerous regions boundaries. Therefore, to relieve the
workload, computer-assisted diagnosis (CAD) was studied
to segment and detect cancers in histopathology images [3,
10, 11]. Following the improvement of the deep learning
model and computing hardware, convolutional neural net-
works (CNNs) models and the derivative models had been
studied.

However, most of the traditional deep learning strategies
did not handle the uncertainty other than random uncer-
tainty well. The epistemic and aleatoric uncertainty in deep
learning architecture and medical images was proved in
the previous work [2]. To model the uncertainty in the
medical images, people began to apply fuzzy logic [7].
Some image enhancement and learning models based on
fuzzy logic have been raised for clinical datasets. In [6]
and [4], the qualities of computerized tomography (CT)
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images, ultrasound images, and magnetic resonance imaging
(MRI) images were improved by applying the fuzzy logic.
And Funmilola et al. [1] proposed the fuzzy kc-means
clustering algorithm for medical image segmentation and
achieved a higher performance.

In this work, we describe a learning model that is trained
on patch-level histopathologic images using fuzzy logic.
The convolutional component will create feature maps as
the inputs for classification tasks. Before using the fully
connected network to classify them, the feature maps would
be mapped into the fuzzy domain, where the uncertainty was
exploited. Furthermore, we also explore the performance of
several learning models for the classification tasks to show
the improved performance the proposed model.

The main contributions of our work are as follows. To
present and handle the uncertainty in the deep learning
method and histopathologic images, we propose a novel
approach to employ the fuzzy theory. Firstly, the group equiv-
ariant convolutional network [9] is applied for extracting the
deep feature maps from histopathologic images. Then, the
deep feature maps are transformed into a fuzzy domain by
two different memberships. In the fuzzy domain, the feature
maps keep the max original information and exploit the
uncertainty information. To improve the performance of the
classifier, combining the original information and the uncer-
tainty of information as a novel input is an important step.
Here, the Min-max fuzzy operation is applied to process the
feature maps. Moreover, to obtain the maximum uncertainty
information by tuning the parameters during fuzzification,
the novel global pooling layer is proposed. We add the
memberships and fuzzy operations in the global pooling
layer. In the experiments, we validate that the proposed
model can structure the uncertainty in the histopathologic
images by using the fuzzy maximum entropy principle [5]
and evaluate its performance on histopathologic cancer de-
tection compared with other baselines.

II. METHOD

A. Fuzzification and Fuzzy operation

According to the fuzzy theory, set A can be mapped into
the fuzzy set by a membership function, which can be written
by Eq. (1):

A = {µA(xi),xi|i = 1,2, · · ·N} (1)

where µA (xi) is the membership function that maps element
xi to the fuzzy domain with a value between 0 and 1. N is
the number of elements in the set. The value indicates the
degree of the element belonging to the fuzzy set. If µA (xi)
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equals to 0, that means xi is not in the fuzzy set; if µA (xi)
is larger than 0 but lower than 1, xi is partially in the set;
and xi is fully in the set when µA (xi) equals to 1.

Because of the narrow histogram of the histopathologic
image (Figure 1), the ordinary fuzzification approach is
not suitable to apply to the original images. Thus, the
membership function is applied to the feature maps that
are generated by the convolutional layer. In the paper, the
standard S-function is employed as the membership function
as below,

µi j = S(zi j;a,b,c)

=


0 zi j < a

2( zi j−a
c−a )2 a≤ zi j < b

1−2( zi j−c
c−a )2 b≤ zi j < c

1 zi j ≥ c

(2)

where zi j is the logit values at the location (i, j) in the
feature maps Z and µi j is defined as the fuzzy values of the
feature maps in the range [0,1]. a and c manipulate the shape
of S-function, and b = (a+ c)/2 is the cross-over point. In
the neural network, a and c are a set of parameters learned
during training in the range of 0 and 1.

On the other hand, the feature maps are generated by non-
linear transformations in the convolutional networks. Here,
we employ the normalization on feature maps to transform
them into the range [0,1]. The process can be regarded as
the fuzzification that keeps most of the original information
of feature maps in the fuzzy domain. The normalization can
be expressed as:

µ ′i j = (zi j−min(zi j))/(max(zi j)−min(zi j)) (3)

With µi j and µ ′i j obtained by fuzzification, we proposed
the Max-min composition to mix them, which is expressed
as:

µ ′′i j = max(min({µi}),min({µ ′ j})) (4)

After the fuzzification of the feature maps, some trans-
formations are used to exploit the uncertainty in the fuzzy
domain and generate the input of a fully connected network
as the pooling function. We define the fuzzy transformation
ft(·) as follows,

Mi = ft(µ ′′i j,µ ′′i j) =
µ ′′i j−µ ′′i j

σµ ′′i j

µ ′′i j =
1
| j|∑

µ ′′i j

µ ′′i j =
1
|n|∑

µ ′′i j

σµ ′′i j
=

√
∑(µ ′′i j−µ ′′i j)

2

|n|

(5)

where n is the channel number of feature maps, which is the
hyperparameter in the last convolutional layer.

The novel global pooling is called adaptive fuzzy pooling.
After the fuzzy global pooling, the fuzzy feature vector

would be inputted into the fully connected neural network
to conduct defuzzification and classification.

(a) Histopathologic images

(b)

Fig. 1. The histogram of RBG components of 1(a)

B. Maximum entropy principle

Generally, to determine the parameters of S-function, it
utilizes the maximum fuzzy entropy principle. Usually, the
entropy is used to measure how much information in source
A which can be defined as:

H(A) =−
N

∑
i=1

P(xi)logP(xi) (6)

where ∑
N
i=1 P(xi) = 1 and {xi|i = 1, · · ·N} are the possible

outputs from source A with the probability P(xi). The larger
entropy H(A) is, there is more information in source A.
Correspondingly, when source A was transformed into the
fuzzy domain, it uses the fuzzy entropy to measure how much
information it can represent in the fuzzy domain. Here, the
entropy of a fuzzy set [5] is written as below:

H(A) =− 1
NIn2 ∑Sn(µA(xi)) (7)

where A is a fuzzy set {(µA(xi),xi)|i= 1,2, · · · ,N} and Sn(∗)
is Shannon functions as following:

Sn(µA(xi)) =−µA(xi)In(µA(xi))

− (1−µA(xi))In(1−µA(xi))
(8)

In the paper, the maximum fuzzy entropy principle is
used to validate whether the source can reach the maximum
fuzzy entropy as well when the parameters of S-function are
determined using the neural network.
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Fig. 2. The basic structure of the proposed model

C. Proposed Model Structure and Training Details

For the architecture of the proposed network, there are
three parts including convolutional network, fuzzy global
pooling, and fully connected network (FCN). In the con-
volutional network, all convolutional layers and batch nor-
malization layers are replaced with the corresponding group-
equivariant versions. And the fuzzy global pooling is used to
transform the features into the fuzzy domain and mix features
as the novel fuzzy input. The fully connected network
(FCN) is next to the global pooling layer to perform the
defuzzification and classification task.

The propose architecture includes the following lay-
ers: g conv1 3 × 3 × 32, g conv2 3 × 3 × 64, pool1 3 ×
3, g conv3 5× 5× 64, pool2 3× 3, g conv4 3× 3× 128,
pool3 3×3, g conv5 3×3×128, pool4 3×3, g conv6 1×
1 × 1000, g pool1 3 × 3, f uzzy pool, and FCN Nclass
(Figure 2). Here, the naming rule follows the format:
”layer type kernel size× kernel size× channel number”.
”g conv” donates group equivariant convolution; ”pool” is
the traditional pooling layer; ”g pool” is the group equiv-
ariant pooling layer; ” f uzzy pool” is the adaptive fuzzy
gloabl pooing layer and ”FCN Nclass” is the fully connected
network with N classes outputs. For instance, ”g conv1 3×
3× 32” means that the first convolutional layer is a group
equivariant convolutional layer, the kernel size is 3×3 and
the number of channels is 32.

To train the proposed model, it uses the Adam optimization
algorithm [8] with with initial learning rate 1e− 3 and
the batch size 32. It And it uses the ReLu activation for
the convolutional layers and the 10% dropout layers have
been applied after the pooling layers. Furthermore, it uses a
sigmoidal activation function in the fully connected output
layers to make the binary decision. The symmetry group
G = p4 is used in the proposed model. It also selects the
weights with the lowest validation losses to evaluate the test
set in the dataset. The models have been trained for about
25 minutes of each epoch using two GeForce GTX 1080 Ti
with the batch size 32.

III. EXPERIMENTAL RESULT

The experimental procedures do not involve human sub-
jects and animal models. The PatchCamelyson dataset is

public and open for research.

A. Dataset and Validation of Maximum Fuzzy Entropy

PatchCamelyson (PCam) dataset [9] is a new large-scale
path level dataset for histopathologic cancer detection. There
are 327,680 color images whose size is 96×96px (Figure 3).
Each image is randomly sampled from histopathologic scans
of lymph node sections and is binarily labeled to indicate the
cancerous tissue. The dataset is divided into three subsets:
a training set (262,144 patches), a validation set (32,768
patches), and a test set (32,768 patches), respectively.

(a) Negative (b) Positive

Fig. 3. Examples of histopathologic patches in dataset

Here, we get the weight of each epoch during training
and calculate the average of fuzzy entropy of the images
in each epoch (Figure 4). From Figure 4, it indicated that
the fuzzy entropy sharply increased between the beginning
epoch and twentieth epoch. In the end, it fluctuated in the
range of 93 after the fortieth epoch, which means that the
information of the image in the fuzzy domain has reached the
maximum level. Figure 4 demonstrated that the uncertainty
of histopathologic image has been exploited in the fuzzy
domain with the increase of the fuzzy entropy.

Fig. 4. The fuzzy entropy during training
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Models NLL Acc (%) AUC (%) F1 Score
Proposed Model 0.214 91.7 97.2 0.912
p4m-Densenet (Benchmark) 0.260 89.8 96.3 N/A
G-CNN (Average Pooling) 0.346 86.3 94.0 0.849
G-CNN (Max Pooling) 0.414 82.0 92.1 0.793
DenseNet(Fuzzy Pooling) 0.295 88.5 96.2 0.889
DenseNet 0.397 82.0 90.3 0.817
InceptionV3 0.640 78.8 85.7 0.778
Resnet 0.450 77.9 88.4 0.757

TABLE I
DIFFERENT MODELS PERFORMANCES ON THE PCAM DATASET IN TERMS OF NEGATIVE LOG-LIKELIHOOD LOSS, ACCURACY, AUC, AND F1 SCORE

(THE BOLD FONT INDICATED THE PROPOSED MODEL)

B. Evaluation results

We evaluate the proposed fuzzy model and prove that
the proposed fuzzy model is more robust and reliable. In
experiments, the proposed model is compared with some
baseline models as well. And the GCNNs with different
global pooling functions including the global average pooling
function and global max pooling function also are employed
to verify the performance of the proposed model. To measure
the learning models, four metrics are utilized including the
negative log-likelihood loss (NLL), accuracy (Acc), area
under the receiver operating characteristic curve (AUC) and
F1 score.

The proposed model achieves 91.7% of accuracy, 97.2%
of AUC, 0.214 of negative log-likelihood loss and 0.912
of F1 score. It outperforms the benchmark model (p4m-
Densenet model) [9]. The benchmark model got 89.8%
of accuracy, 96.3% of AUC, and 0.260 of negative log-
likelihood loss. Table I clearly indicates that the proposed
model with adaptive fuzzy global function improves the
performance a lot on the histopathologic cancer detection
compared with other learning models.

IV. CONCLUSION

In this paper, a novel fuzzy deep learning approach is
proposed to detect cancer in histopathological images. The
fuzzy group equivariant convolutional neural network is pro-
posed, which consists of the convolutional network as feature
extractor, fuzzy global pooling layer as fuzzy processing,
and fully connected network as classifier. In the fuzzy global
pooling layer, the generated feature maps are transferred into
the fuzzy domain by two different fuzzification methods.
One of the fuzzy feature maps exploits the uncertainty
information of histopathologic images, and the other keeps
the original information. Furthermore, the fuzzy feature maps
are mixed by using Min-max operations.

Using the proposed model, the maximum fuzzy entropy
can be obtained after the fortieth epoch, and the narrow
histogram issue of histopathologic images is handled well.
The proposed model obtained state-of-the-art performance
with 91.7% of accuracy, 97.2% of AUC, 0.214 of negative
log-likelihood loss and 0.912 of F1 score.
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