
  

  

Abstract— Intraoperative tumor localization in a deflated lung 

in minimally invasive surgery (MIS) is challenging as the lung 

cannot be manually palpated through small incisions. To do so 

remotely, an articulated multisensory imaging device combining 

tactile and ultrasound sensors was developed. It visualizes the 

surface tactile map and the depth of the tissue. However, with little 

maneuverability in MIS, localizing tumors using instrumented 

palpation is both tedious and inefficient. In this paper, a texture-

based image guidance system that classifies tactile-guided 

ultrasound texture regions and provides beliefs on their types is 

proposed. The resulting interactive feedback allows directed 

palpation in MIS. A k-means classifier is used to first cluster gray-

level co-occurrence matrix (GLCM)-based texture features of the 

ultrasound regions, followed by hidden Markov model-based belief 

propagation to establish confidence about the clustered features 

observing repeated patterns. When the beliefs converge, the system 

autonomously detects tumor and nontumor textures. The approach 

was tested on 20 ex vivo soft tissue specimens in a staged MIS. The 

results showed that with guidance, tumors in MIS could be 

localized with 98% accuracy, 99% sensitivity, and 97% specificity. 

Clinical Relevance— Texture-based image guidance adds 

efficiency and control to instrumented palpation in MIS. It renders 

fluidity and accuracy in image acquisition using a hand-held device 

where fatigue from prolonged handling affects imaging quality. 

I. INTRODUCTION 

Thoracotomy-based surgical resection of early stage lung 

tumors can treat lung cancer but causes trauma and pain and 

requires longer recovery time [1]. MIS can mitigate these effects 

but needs intraoperative tumor localization. Although 

preoperative CT shows tumor size, shape, and location in the 

lung, deflating the lung for surgery changes all of these 

parameters. Intraoperative imaging can provide visualization in 

MIS to enable examination of target sites and delivery of high-

precision treatment [2]. Ultrasound (US) imaging is a real-time 

modality that can be combined with other modalities for 

accurate guidance and safer navigation [3]. However, it may not 

work well on a deflated lung when it contains residual air [4]. 

Tactile imaging is another real-time modality that uses tactile 

feedback to detect occult tumors [5]. We anticipate that by 

fusing tactile and US imaging, tumors in a deflated lung can be 

adequately localized in MIS.  

Prior work involved combining tactile and US sensors in 

mechatronic and robotic instruments [6, 7] to enable articulated 
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tissue palpation to acquire multimodal images [8]. Experiments 

showed that finding tumors in ex vivo specimens in MIS 

required concurrent visualization of the intraoperative image 

and the phantom thoracic cavity [8, 9]. The imaging procedure 

included instrument-assisted palpation and image interpretation 

while cognitively tracking the palpated sites. These were labor- 

and memory-intensive tasks that, combined with limited 

instrument maneuverability in MIS, made tumor localization 

very inefficient. To address this issue, automated image 

interpretation was considered. Texture characterization is a 

method to detect heterogeneous regions in images [10]. Texture 

analysis to identify solid, semi-solid, and nonsolid lung tumors 

has been an active area of research [11]. A study on 

endobronchial US imaging showed that texture features for 

benign and malignant tumors are statistically different [12]. 

Linear classifiers can differentiate textures of lung diseases on 

US images [13], but their viability in sequential US imaging is 

not yet known. However, hidden Markov models (HMMs) have 

shown success in characterizing tumor by capturing differing 

temporal signatures in sequential US imaging [14].  

In this paper, a method for texture-based image guidance to 

efficiently localize tumors in ex vivo specimens in staged MIS 

experiments is presented. It adopts an artificial intelligence (AI) 

approach that uses a k-means classifier [15] to cluster gray-level 

co-occurrence matrix (GLCM) texture features [16] of the 

tactile-guided US regions. It then uses an HMM to gradually 

learn the feature characteristics from patterns accumulated in the 

clusters over time. Finally, it applies Bayes’ filtering [17] to the 

tactile–US feeds to estimate beliefs about the texture types 

defined by the feature clusters. Interactive visualization of these 

beliefs may be used to direct tissue palpation to capture similar 

textures in the tactile–US images acquired. These additional 

images further improve the beliefs and the subsequent image 

guidance. To conclude, palpation results using texture-based 

image guidance are compared with palpation results without 

texture-based image guidance, and with other published work. 

II. METHOD 

A. Previous Work 

A knowledge-encoded feature detector (KeFD) was 
developed. It detects tactile spots in a tactile–US image feed 
(iҒ𝑣), generates regions of interest (ROIs) around the aligned 
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US regions and passes them through a series of filters. The 
resulting regions within the ROIs are then labelled as either 
tumors or nontumors. These labels need to be assessed further.  

B. Autonomous Tumor Detection and Guidance Framework 

Fig. 1 illustrates the framework for autonomous tumor 
detection and texture-based image guidance. The sets of 
segmented masks, {𝑣𝑚𝑠}, and labels, {𝑣𝑙}, of a iҒ𝑣 from the 
KeFD are first stored in a database. Here, 𝑣 is the feed serial 
and 𝑣𝑚𝑠 and 𝑣𝑙  are the associated sets of masks and labels 
belonging to the US image at 𝑣. If the database contains a 
texture model, denoted as 𝜓+, the preexisting unclassified feeds 
in the database, {iҒ𝑢}, are matched to the model 𝜓 and 
classified in a decision network (DN) function. If no unclassified 
data exists, only the current iҒ𝑣 is classified. This completes the 
autonomous tumor detection workflow. The result is visualized 
in real-time.  

The guidance workflow activates when no texture model is 
found, denoted as 𝜓−. At first, the US 𝑣𝑚𝑠 of the current iҒ𝑣 are 
consecutively convolved with the current normalized US image 
(𝐼�̂�𝑢𝑠

) to sample the corresponding US texture regions in an 

iterative convolution routine 𝑬(iҒ𝑣, {𝑣𝑚𝑠}, {𝑣𝑙}, 𝐼�̂�𝑢𝑠
). Resulting 

texture samples are accumulated in a set S = {𝑠0: 𝑠𝑁−1}, where 
N denotes the sample quantity. If it is the very first feed iҒ𝑣=0, a 
belief matrix 𝐌𝛽 is initialized. Here 𝛽 is the belief ratio. The 𝐌𝛽 

rows list the GLCM texture features including angular second 
moment, energy, contrast, homogeneity, inverse difference 
moment, entropy, and mean. The columns list the beliefs on the 
sample labels once the sample feature values are clustered. At 
least two samples (N ≥ 2) are required to next activate a feature 
extractor 𝑬𝑓(𝑺). For each texture sample in 𝑺, it calculates the 

GLCM feature vector (𝒗𝑓) and stores that row-wise in matrix 

[𝐌𝑠𝑓]
𝑁×𝐹

. Here, s is the row-wise sample index from 0 to N and 

f is the column index for each feature value in 𝒗𝑓 from 0 to F. 

Thus, a 𝐌𝑠𝑓 column vector contains the values of a feature 

across the N samples. 𝐌𝑠𝑓 is then passed to a feature classifier. 

It applies the 1D k-means filter with k = 2 to each column vector 
in 𝐌𝑠𝑓 to segregate the content into two clusters 𝑐𝑙 ϵ {0, 1}. As 

a result, the 𝐌𝛽 columns are updated as 𝑐𝑙0/1𝛽𝑡/𝑛𝑡, where 𝛽𝑡 

and 𝛽𝑛𝑡 denote the beliefs for tumor and nontumor state labels. 
The sum of 𝛽 for a clustered feature value (i.e., 𝑐𝑙0𝛽𝑡 + 𝑐𝑙0𝛽𝑛𝑡) 
always adds up to 1.0. The clustered column vectors of 𝐌𝑠𝑓, 

denoted now as 𝑐𝑙0/1, are stored in a tensor 𝑻𝑓𝑣. The ranges,  

{Rn}, and the confidence intervals, {CI}, are computed along 
both 𝑐𝑙0 and 𝑐𝑙1 to define their differences in each feature. In 
another tensor 𝑻𝑓𝑙, the state labels (i.e., 𝑡 or 𝑛𝑡) of the individual 

values in 𝑐𝑙0 and 𝑐𝑙1 across the features are stored. The state 
labels are deduced from the 𝑣𝑙  of the parent iҒ𝑣. The 
accumulated distribution of these labels in 𝑐𝑙0 and 𝑐𝑙1 across 
the features are stored in the last tensor 𝑻𝑙𝑑. These three tensors 
allow the 𝑐𝑙0/1 data to be modeled using an HMM.   

 C. Modelling Clustered Sequential Data using HMM 

Fig. 2 illustrates the HMM that was adopted to represent 
long- and short-term dependencies among the clustered data. 
The US textures that the next iҒ𝑣 has are unknown. However, 
clustering the feature values at iҒ𝑣 allows the similarity of the 
next value in a 𝑐𝑙 to the existing ones to be predicted. As shown, 
state 𝑥𝜏 of an iҒ𝑣 added into a 𝑐𝑙 at 𝜏 depends on the previous 
state 𝑥𝜏−1 and the hidden state 𝑥𝑐𝑚𝜏

 updated at each 𝜏 evaluating 

(∑ 𝑥𝑖 = 〈𝑡 𝑜𝑟 𝑛𝑡〉𝑖=0→𝜏 ) (∑ ∀𝑥𝑖𝑖=0→𝜏 )⁄ . It computes the ratio 
of the total number of a particular state (i.e., 𝑡 or 𝑛𝑡) to the total 
number of all states accumulated in a 𝑐𝑙 untill 𝜏. Hence, 𝑥𝑐𝑚𝜏

 is 

the maximum likelihood for an overall state of a 𝑐𝑙 given long-
term observations. Lastly, 𝐸𝜏 is the evidence observed in iҒ𝑣 at 
𝜏. Three batches (𝐵0:2) of 𝑥𝑐𝑚𝜏

 distributions were determined 

empirically to describe state transition probabilities P(𝑥𝜏 |𝑥𝜏−1) 
based on label accumulations in a 𝑐𝑙. Each batch constitutes a 
different conditional probability matrix 𝐌𝑐𝑝, selected based on 

the updated value of 𝑥𝑐𝑚𝜏
. Likewise, the system performance 

without image guidance comprises the maximum likelihood 
estimates of 𝐸𝜏 called the emission probabilities 𝜀(𝐸𝜏|𝑥𝜏) that 
constitute the system confidence matrix 𝐌𝑠𝑐 . These matrices 
(see the Appendix) model the training operation of the HMM. 

D. Belief Propagation (BP)  

The proposed HMM is a recurrent Bayesian network that 
can estimate the belief on 𝑥𝜏 of a 𝑐𝑙 given states 𝑥𝜏−1 and 𝑥𝑐𝑚𝜏

. 

When multiple hidden states govern an observed state in HMM, 
as in our case, the event space can be expressed using the 
extended form of Bayes’ theorem (1), 

𝑃(𝐴𝑘|𝐵) =  
𝑃(𝐴𝑘)𝑃(𝐵|𝐴𝑘)

∑ 𝑃(𝐴𝑛)𝑃(𝐵|𝐴𝑛)𝑛
 .      (1) 

 

Figure 1. Framework for autonomous detection and image guidance. The 
green blocks are data, with dashed blocks indicating image data. Blue blocks 

are functions. Solid green arrows indicate data saved in the database and 

dotted arrows show data retrieval. Black arrows denote process flow. 

Notations used: iҒ𝒗 : tactile–US image feed; KeFD: knowledge-encoded feature 

detector; {𝒗𝒎𝒔} and {𝒗𝒍}: sets of segmented masks and labels; iҒ𝑢: preexisting 

unclassified feeds; 𝝍: texture model; DN: decision network; E(•): iterative 

convolution; S: texture sample set; BP: belief propagation; 𝑴𝛽: belief matrix; 

𝑴𝛽𝜏
 and 𝑴𝛽𝜏−1

: current and previous belief matrices in time; 𝑴𝑐𝑣: convergence 

matrix; HMM: hidden Markov model; 𝑬𝑓(𝑺): feature extractor of set S; 

[𝑴𝑠𝑓]
𝑁×𝐹

: feature matrix of N samples and F features; 𝑻𝑓𝑣, 𝑻𝑓𝑙 and 𝑻𝑙𝑑: tensors 

of feature values, feature labels, and label distributions; {Rn} and {CI}: ranges 

and confidence intervals of values in 𝑻𝑓𝑣. 

 
Figure 2. HMM to observe accumulated data in a cl over time. 𝑥𝜏 depends 

on 𝑥𝜏−1 and 𝑥𝑐𝑚𝜏
. 𝐸𝜏 is the observed evidence at time 𝜏. 
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Here, 𝑃(𝐴𝑘|𝐵) is the posterior probability of state 𝐴𝑘 given 

the probability of event B. 𝑃(𝐵|𝐴𝑘) is the likelihood estimate of 

B given 𝐴𝑘 while 𝑃(𝐴𝑘) is the prior probability of 𝐴𝑘. 

∑ 𝑃(𝐴𝑛)𝑃(𝐵|𝐴𝑛)𝑛  is the summation of all evidential 

probabilities of all possible states of event 𝐴. Therefore, 

expressing 1/(∑ 𝑃(𝐴𝑛)𝑃(𝐵|𝐴𝑛)𝑛 ) as a normalizing constant 𝜆, 

𝑃(𝐴𝑘|𝐵) can be redefined as the belief of 𝐴𝑘 as 

𝑃(𝐴𝑘|𝐵) =  𝜆𝑃(𝐴𝑘)𝑃(𝐵|𝐴𝑘).          (2) 

This is the probability model exercised to update a prior to a 
posterior belief considering new evidence. As similar labels are 
accumulated in a 𝑐𝑙 as more iҒ𝑣s are acquired, this belief is 
expected to gradually increase. To observe this, the recursive 

Bayesian filter outlined in Table 1 is adopted. There, �̅�(𝑥𝜏) is 
the propagated posterior belief governed by 𝛽(𝑥𝜏−1), the prior 

belief, and 𝑃(𝑥𝜏|𝑥𝜏−1,  𝑥𝑐𝑚𝜏
), the transition probabilities at 𝑥𝜏. 

𝛽(𝑥𝜏) is the updated belief on 𝑥𝜏 after applying the appropriate 
𝜀(𝐸𝜏|𝑥𝜏) on the observed data from the KeFD to the propagated 

belief �̅�(𝑥𝜏). 𝛽(𝑥𝜏) of a current iҒ𝑣 is stored in 𝐌𝛽𝜏
 and the 

changes from the previous iҒ𝑣−1 are stored as  

𝐌𝑐𝑣 ← |𝐌𝛽𝜏
− 𝐌𝛽𝜏−1

|,        (3) 

where 𝐌𝛽𝜏−1
 is the previous belief matrix and 𝐌𝑐𝑣  is the 

convergence matrix. As 𝐌𝛽𝜏−1
 updates to 𝐌𝛽𝜏

, the CI, RN, and 

𝜓𝑡 or 𝑛𝑡 for both 𝑐𝑙0 𝑎𝑛𝑑 1 in each feature also update. When 𝐌𝑐𝑣  
converges, the acquired states of these components are taken as 
the learned contents to activate autonomous detection. For 𝐌𝑐𝑣  
to converge, the argument in (4) must be satisfied for at least one 
of the column vectors in 𝐌𝑐𝑣  that defines the texture types 
detected in an iҒ𝑣. 

𝛽 ≥ 𝛽𝑇ℎ ⋀ 𝑅𝑀𝑆𝐷 ( 𝐌𝑐𝑣
∀𝐜𝜖{0:3}

) ≤ 𝜉 ⋀ 𝜇 ( 𝐌𝛽𝜏

∀𝐜𝜖{0:3}
) ≥ 𝜇 (𝐌𝛽𝜏−1

∀𝐜𝜖{0:3}
)  (4) 

The belief 𝛽 must reach a threshold 𝛽𝑇ℎ. The root mean squared 
difference (RMSD) along a 𝐌𝑐𝑣 column should be negligibly 

small to indicate saturation. And, the mean belief on a cl state at 
𝜏 must be greater or equal to that at 𝜏 − 1. For the results 

presented in this paper, 𝛽𝑇ℎ = 0.8 and 𝜉 = 0.05 were used. 

III. EXPERIMENTS AND RESULTS  

Acquiring a significant number of deflated animal lungs was 
not feasible as it required clinically induced atelectasis. 20 ex 
vivo porcine liver specimens were injected with liquid agar to 
simulate deflated lung tumors [18]. All specimens were imaged 
with C-arm fluoroscopy imaging (OEC 9900 elite, General 
Electric, Fairfield, CT, USA) to attain preoperative images. 
Each specimen was palpated three times in a staged MIS (Fig. 
3a) with and without texture-based guidance, amounting to a 
total of 120 conducted trials to produce a database of 1784 pairs 
of tactile–US images. An expert operator conducted all of the 
trials, as it was important to maintain consistent imaging quality 

 

 
to validate the proposed work. A multiple participant-based 
study could not be designed as a lack of experience and skill in 
maneuvering the multisensory imaging device in MIS generated 
large variabilities in the quality of the datasets. Nevertheless, to 
remove sources of bias, an assistant was recruited to deliver 
deidentified random specimens and their fluoroscopy images to 
the MIS site one at a time and to keep track of the completed 
trials on each specimen. In every trial, the guided and the non-
guided palpations were conducted alternatively. Accuracy (𝐴𝑐), 
sensitivity (𝑆𝑛) and specificity (𝑆𝑝) were evaluated for each 
labelled tactile–US image in each captured sequence using (5). 

𝐴𝑐 =  
T𝑡+T𝑛𝑡

T𝑡+T𝑛𝑡+F𝑡+F𝑛𝑡
 ; 𝑆𝑛 =  

T𝑡

T𝑡+F𝑛𝑡
 ; 𝑆𝑝 =  

T𝑛𝑡

T𝑛𝑡+F𝑡
   (5) 

Here, T𝑡 and T𝑛𝑡 are the number of true tumors and 
nontumors identified, while F𝑡 and F𝑛𝑡 are the number of false 

 
Figure 3. (a) The MIS experimental setup. 

 

Figure 3. (b) Fused palpation map registered to fluoroscopy images. 

Without guidance 

 
With guidance 

 
Figure 4. (a) Comparing localization accuracies with and without guidance. 

(b) Accuracies observed in each trial without guidance. (c) Difference 
observed after adding texture-based guidance for palpation in MIS. 

(c) 

(b) 

(a) 

TABLE I. RECURSIVE BAYESIAN FILTER FOR BP 

for ∀𝑥𝜏 in a cl 𝜖 {0, 1}, where 𝑥𝜏 𝜖 {𝑡, 𝑛𝑡} 

 �̅�(𝑥𝜏) =  ∑ 𝛽(𝑥𝜏−1)𝑃(𝑥𝜏|𝑥𝜏−1,  𝑥𝑐𝑚𝜏
)𝑥𝜏−1
 

𝛽(𝑥𝜏) = 𝜆�̅�(𝑥𝜏)𝜀(𝐸𝜏|𝑥𝜏), where 𝜆 =
1.0

∑ �̅�(𝑥𝜏)𝜀(𝐸𝜏|𝑥𝜏)
𝑥𝜏 𝜖 {𝑡,𝑛𝑡}

  

end 

𝐌𝛽𝜏
←  𝛽(𝑥𝜏) 
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tumors and nontumors indicated. To cross-validate the tumor 
detections, the fused localization maps were scaled and overlaid 
on the fluoroscopy images (Fig. 3b). The smallest tumor the 
system could detect was 2 cm [19]. Fig. 4a compares the mean 
localization accuracies with and without the guidance across the 
image sequences acquired. With guidance, 𝐴𝑐 improved from 
85% to 98%, 𝑆𝑛 from 95% to 99% and most notably 𝑆𝑝 from 
73% to 97%. This indicates that the system could classify 
texture samples based on their feature characteristics even if the 
source images were partially mislabeled by KeFD. Fig. 4b 
compares the trials without guidance. Both 𝐴𝑐 and 𝑆𝑛 improved 
over time, likely due to better palpation resulting from 
experience and skill acquisition; however, the large interquartile 
ranges in trials 2 and 3 for 𝑆𝑝 indicate the limitation of the 
KeFD. With guidance activated, the difference is clear in all 
trials shown in Fig. 4c. This time, 𝑆𝑝 also had some outliers in 
trials 1 and 2 that were reduced by trial 3.  

IV. DISCUSSIONS AND CONCLUSIONS 

Table II compares the results of this work to other published 
results. The tactile–US guidance results are better than that of 
the robotics-assisted TSI (tactile sensing instrument) [20]. Given 

a force and a position-controlled model, it could objectively 
detect the tumor sites accurately. However, the lower 𝑆𝑝 shows 
that it could not detect the nontumor sites as well. That is 
because the visual representation of the force applied on the 
tissue sometimes resulted in false positives and false negatives. 
With the handheld TSS (tactile sensing system) [18] or the US 
probe [18], tumor detection relied entirely on human 
interpretation of the visualizations. The results were poorer since 
the readings could not be objectively analyzed at the time. With 
tactile–US imaging, real-time analysis became possible through 
the KeFD. This led to better results, as depicted in Fig. 5. It 
could accurately detect both the tumor and the nontumor sites 
(Fig. 5a–c) automatically, but it also detected false positives at 
times (Fig. 5d). 𝐴𝑐 and 𝑆𝑝 were lower since palpation could not 
be done in a directed manner. With the addition of guidance, the 
results improved significantly. Fig. 6 demonstrates how the 
system directs texture-guided palpation imaging in MIS. At the 
start, no labelled texture is available. As images are acquired, 
note the detected textures and the updating beliefs on their types 
in Fig. 6a–b, belief convergence availing retrospective detection 
in Fig. 6c, and automated detection onward in Fig. 6d. Note that 
with learned texture incorporated, the false positive from Fig. 5d 
is also eliminated in Fig. 6d. The results are now similar to some 
of the clinically-tested highly accurate AI systems [21, 22]. This 
holds promise that the proposed method will perform well when 
tested in in vivo models. 

In this paper, a texture-based guidance method for palpation 

imaging-based tumor localization in MIS was introduced. The 

results demonstrate a significant improvement over previous 

work. Tumor localization effort was minimized through directed 

palpation, compared to strenuous palpation needed without 

guidance. Future work will focus on further improvement and 

validation on deflated lung specimens and in vivo models. 

TABLE II. COMPARING TEXTURE-GUIDED TC–US IMAGING TO PREVIOUS 

SYSTEMS AND OTHER SYSTEMS IN LITERATURE 

Methods Specimen Ac Sn Sp 

Robotics-assisted TSI [20] ex vivo bovine liver 0.82 0.89 0.62 

TSS [18] ex vivo bovine liver 0.67 0.83 0.33 

US [18] ex vivo bovine liver 0.58 0.67 0.42 

SWE-US with DPN [21] Breast tumors 0.95 0.98 0.94 

US-USE with CNN [22] Thyroid nodules 0.94 0.92 0.97 

TC–US w/o guidance ex vivo porcine liver 0.85 0.95 0.73 

TC–US with guidance ex vivo porcine liver 0.98 0.99 0.97 

 

         

(a)                  (b)              (c)             (d) 

Figure 5. KeFD classifier results without texture-based guidance in MIS. (a) Correct detection of nontumor region. (b) and (c) Correct subsequent detections 

of tumor regions. (d) Detection of false positives, as labelled, in addition to correct tumor detections. 

False 
positive 

                 

(a)                  (b)              (c)             (d) 

 Figure 6. Texture-guided palpation imaging in MIS. (a) and (b) Updating beliefs on detected texture types. (c) Retrospective localization once beliefs converge. 
(d) Autonomous detection of a tumor texture region in a future image. 
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EMPIRICALLY DETERMINED TRANSITION AND EMISSION PROBABILITIES 

(a) Conditional probability matrix 𝐌𝑐𝑝 (b) System confidence matrix 𝐌𝑠𝑐 

states 𝑥𝜏   𝐸𝜏 

𝑥cm𝜏
 𝑥𝜏−1 t nt  states t nt 

B0: 
(𝑥0→𝜏 = 𝑡)% ≥ 0.6 t 0.9 0.1 

𝑥𝜏 
t 

nt 

0.95 0.05 

(𝑥0→𝜏 = 𝑛𝑡)% < 0.6 nt 0.8 0.2 0.27 0.73 

B1: 
(𝑥0→𝜏 = 𝑡)% = 0.5 t 0.5 0.5     

(𝑥0→𝜏 = 𝑛𝑡)% = 0.5 nt 0.5 0.5     

B2: 
(𝑥0→𝜏 = 𝑛𝑡)% ≥ 0.6 t 0.2 0.8     

(𝑥0→𝜏 = 𝑡)% < 0.6 nt 0.3 0.7     
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