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Abstract— Analysis and classification of electromyography 

(EMG) signals are crucial for rehabilitation and motor control. 

This study investigates electromyogram (EMG) time-frequency 

representations and then creates conventional and deep learning 

models for EMG signal classification. Firstly, a dataset of single-

channel surface EMG signals has been recorded for four 

subjects to differentiate between forearm flexion and extension. 

Then, different time-frequency EMG representations have been 

used to build conventional and deep learning models for EMG 

classification. We compared the performance of pre-trained 

convolutional neural network models, namely GoogLeNet, 

SqueezeNet and AlexNet, and achieved accuracies of 92.71%, 

90.63% and 87.5%, respectively. Also, data augmentation 

techniques on the levels of raw EMG signals and their time-

frequency representations helped improve the accuracy of 

GoogLeNet to 96.88%. Furthermore, our approach 

demonstrated superior performance on another publicly 

available 10-class EMG dataset, and also using traditional 

classifiers trained on hand-crafted features. 

I. INTRODUCTION 

Limb loss is considered one of the most significant challenges 

that mandate the use of proper prosthetic implants in order to 

perform daily life tasks. In the United States, more than 1.7 

million persons are living with limb loss [1]. Also, according 

to the World Health Organization (WHO), about 30 million 

people are estimated to be in need of prosthetic and orthotic 

devices [2]. This need motivated dramatic growth in the 

development of automatic prosthesis control techniques via 

the peripheral and central nervous systems. A review of these 

methods is given by Cloutier [3] and Williams [4]. Recently, 

myoelectric prostheses have emerged as key tools in this field. 

The control of these devices is completely dependent on 

electromyography (EMG) signals recorded at nearby residual 

muscles. This EMG-based control is achievable because the 

neuro-muscular system of the residual limb parts remains 

functional even after limb loss [5]. Also, the activity needed 

by an amputee to control a prosthesis is reasonably small based 

on the recorded EMG signals [6]. Numerous EMG-based 

systems have been recently used in different applications for 

action classification [7], emotion detection [8], and automated 

disease diagnosis [9]. Analysis of features and selection of the 

best feature set for a specific type of signals is a time-

consuming multifaceted task. Therefore, many approaches 

have been proposed to overcome the limitations of traditional 

feature extraction methods. In particular, end-to-end deep 

learning models have been used in many applications to fully 

automate the feature extraction and classification operations 
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[10]. As the deep learning systems became more mature, these 

systems demonstrated high degrees of effectiveness and 

capability for many applications.  

II. RELATED WORK 

Numerous biomedical signal processing methods have 
been proposed for biomedical classification and detection 
tasks. In particular, we review here those methods involving 
time-frequency representations of biomedical signals. We also 
focus our attention on methods employing deep learning 
schemes, which generally demonstrate superior performance 
on signal processing tasks.  

Xiong et al. [11] used time-frequency representations of 

ECG signals in order to train a 16-layer CNN classifier for 

automatic arterial fibrillation detection. The trained classifier 

achieved an accuracy of 85%. In the area of EEG signal 

analysis, CNNs have been trained on time-frequency EEG 

representations to diagnose sleep disorders such as sleep 

apnea, narcolepsy or insomnia. For example, Vilamala et al. 

[12] created time-frequency representations of sleep EEG 

signals using the short-time Fourier transform (STFT) for 

sleep stage categorization. Furthermore, Xia et al. addressed 

the problem of limb movement estimation using a hybrid 

architecture that combines a CNN with a recurrent neural 

network (RNN) [13]. The proposed system employed 

kinematic information derived from EMG signal channels for 

myoelectric prosthesis control. The experimental results 

showed higher performance of the hybrid CNN-RNN system 

in comparison to the CNN one.  

Although surface EMG signals show high variations across 
different subjects (even with precise electrode placement) 
[14], trained CNN classifiers show high robustness against 
these variations [15]. So far, many classification problems 
employed manual feature engineering. However, deep 
learning has shifted the focus in classification problems 
towards using learned features instead of engineered ones. 
Also, pre-trained CNN models have been widely employed to 
alleviate the problem of biomedical data scarcity. In addition, 
spectrogram and scalogram time-frequency representations 
obtained using STFT and CWT offer better tools for advanced 
biomedical signal analysis. Consequently, there has been a 
surge in the use of time-frequency representations for training 
deep learning models. For example, STFT has been applied to 
transform surface EMG signals into spectrograms [16]. As 
well, CWT has been used to transform ECG signals into 
scalograms which are used for CNN training [17]. 
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 In addition, the CWT was used for building EEG 

representations for seizure detection [18], and also EMG 

analysis in lower limbs [14]. The STFT was preferred over 

CWT due to the expensive computational requirements for the 

last one [19]. In particular, with non-stationary signals like 

EMG, the CWT proved its ability to visualize the blobs and 

edges in the scalogram representation [20]. To deal with the 

EMG nonstationary behavior, the CWT was applied to 

multichannel EMG signals and the produced scalograms were 

concatenated to form a 3D input for CNNs. However, the 3D 

inputs required a lot of preprocessing steps and significantly 

increased the computational cost. In our work, we propose a 

low-complexity approach based on single-channel and two-

channel EMG recordings. Our approach addresses EMG 

classification tasks by employing time-frequency 

representations of the EMG signals for fine-tuning the weights 

of pretrained CNN models. 

III. MATERIALS AND METHODS 

A. Dataset 

In this work, EMG data samples were collected at Al-

Jazeera Hospital, Riyadh, Saudi Arabia. Four healthy subjects 

were involved in this study: two males and two females with 

an average age of 28 ± 4 years. No subject had any forearm-

related medical condition or history of nervous system 

problems. Informed consent forms were obtained from the 

participants prior to data collection. In addition, this process 

has been approved by the hospital management and the Ethics 

Committee for research purposes. EMG signals were recorded 

using a Micromed Neurowerk EMG System [21]. 

                 

                 (a)                                                        (b) 

Figure 1. Hand movement classes in our dataset: (a) Flexion, (b) Extension. 

In accordance with the best practices for forearm EMG 

measurement, reference and active electrodes were placed 

circumferentially on the medial-flexor muscles in the 

superficial compartment of the forearm [19]. Instructions were 

presented to subjects using PowerPoint slides shown on a 

computer screen. Each subject was presented with timed 

slides, where each slide contained a single instruction to 

perform flexion or extension or have a break as shown in Fig. 

1. If the subject made errors, or had delays in performing 

actions or following instructions, the trial was discarded. 

Timed breaks were allowed between performing gestures to 

prevent muscle fatigue or attention loss. After the subjects 

understood the instructions, they got themselves acquainted 

with the experimental protocol. Then, EMG data samples were 

collected from each participant while performing 30 

repetitions of each of the flexion and extension movements 

with 6 seconds for each trial with a 2-second break between 

each two trials. Hence, a balanced dataset of 60 repetitions per 

subject was collected, with a sampling frequency of 10,000 Hz. 

The total number of trials for all participants is 240, where 

60% of them were used for training while the rest were used 

for testing. Each trial is composed of 60,000 samples in length. 

The overall recorded data was collected in one matrix and 

labeled manually using MATLAB 2018a. 

B. Data preprocessing 

The acquired EMG data was pre-processed and 

transformed into three types of scalograms based on the CWT. 

The different scalogram types are based respectively on three 

mother wavelets: the generalized Morse wavelet, the analytic 

Morlet (Gabor) wavelet and the Bump mother wavelet [22].  

As a result, the EMG data was transformed into three sets with 

240 scalograms in each set. Each scalogram was scaled using 

cubic interpolation to a size of 224×224 pixels, and then used 

as input to the pretrained CNNs. Fig. 2 shows an example of 

the scaled scalograms for the cases of flexion and extension. 

                    

                       (a)                                                               (b) 

Figure 2. Scalogram images obtained using the generalized Morse wavelet for 
(a) Flexion, and (b) Extension. 

C. Pretrained networks   

We initially investigated the retraining of CNNs extensively 

trained on ImageNet [23]. This dataset has more than 1.2 

million images classified into 1,000 categories. Pretrained 

CNNs can be further retrained to be tailored for problems with 

small datasets [24]. In this work, a transfer learning approach 

was followed where the last few layers of such pertained CNN 

architectures were fine-tuned using the EMG scalograms.  In 

particular, transfer learning was applied to the final layers of 

the GoogLeNet, SqueezeNet, and AlexNet CNN pretrained 

models. Extensive experiments were carried out to evaluate 

and compare the EMG classification performance for the three 

CNN architectures. Also, the effect of the learning rate and the 

optimization technique was analyzed. The best performance 

was obtained using the stochastic gradient descent with 

momentum, an initial learning rate of 1× 10-4, and a mini-

batch size of 30 observations for each iteration.  

IV. RESULTS 

The CNN training and testing have been performed using 
the MATLAB 2018a Deep Learning Toolbox, on a laptop with 
an Intel Core i3 1.50-GHz processor and a 4-GB RAM.  

TABLE I.  EMG CLASSIFICATION RESULTS WITH THREE CNN TYPES 

 GoogLeNet SqueezeNet AlexNet 

Training time 45 min  25 min  20 min  
Accuracy 92.71% 90.63 87.5% 

  
As shown in Table I, the above-mentioned CNN architectures 
were compared according to the training time, and the 
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classification test accuracy. These results were obtained using 
scalograms constructed from the generalized Morse mother 
wavelet transform of raw EMG signals. As shown, 
GoogLeNet clearly achieved the best performance. 
Furthermore, the performance of the GoogLeNet-based CNN 
was further evaluated using other mother wavelets for 
scalogram construction. A significant improvement in 
accuracy is obtained using the analytic Morlet (Gabor) wavelet 
as shown in Table II. 

TABLE II.  THE EMG CLASSIFICATION RESULTS WITH THREE 

MOTHER WAVELETS FOR THE GOOGLENET-BASED CNN MODEL 

Analytic Morlet Morse Wavelet Bump Mother 

95.83% 92.71% 86.46% 

In addition, data augmentation was applied to increase the 

training data, and hence improve the generalization 

performance. Specifically, adding noise to training data tends 

to strengthen the learning performance [25]. In our 

experiments, white Gaussian noise equivalent to 30% of the 

original recorded sEMG signal power has been added [26]. 

Thus, the training data size was doubled from 144 to 288 using 

this augmentation technique. Scalograms were obtained for 

the augmented data and used to retrain the GoogLeNet-based 

CNN model with the analytic Morlet (Gabor) wavelet (See 

Fig. 3). 

Figure 3. Training progress of GoogLeNet with data augmentation. 

 

This process resulted in an improved accuracy of 96.88%. For 

further validation of the proposed system, we investigated its 

performance in the classification of publically-available two-

channel EMG data associated with ten classes of finger 

movements [27] (See Fig. 4). 
 

Figure 4. Ten classes of finger movements [47]. 

 

Khusbaba et al. [28] categorized the EMG signals associated 

with these finger movements using a manual feature 

engineering approach. For each of the two EMG channels, 

scalograms were obtained for all trials with 137 scales and 

20,000-sample length representing 5 sec for each trial. Also, 

non-overlapping 500-millisecond sliding windows were used 

to yield ten scalograms for each channel with a size of 

137×2,000. Each scalogram was rescaled with cubic 

interpolation to a size of 1,000×2,000. Each corresponding 

channel-specific scalograms were concatenated vertically to 

yield a combined scalogram of a size of 2,000×2,000. Finally, 

each combined scalogram was rescaled to a size of 224×224 

to fit the input layer of the GoogLeNet-based CNN. Out of a 

total of 6,000 scalograms, we randomly selected 3,960 

scalograms for training, and the remaining 2,040 ones for 

testing. The training data was augmented with data 

contaminated with white Gaussian noise with a mean 

equivalent to 30% of the original scalogram [26]. Hence, the 

training data size was doubled from 3,960 to 7,920. A 

GoogLeNet-based CNN architecture with the same above-

mentioned settings was trained for 2 epochs with this 

augmented 10-class data using a batch size of 60. The trained 

model achieved an overall accuracy of 94.7% compared to 

93.33% without data augmentation. The classification time 

for each scalogram was less than 350 milliseconds. The 

associated training parameters without and with data 

augmentation are listed in Table III. 

TABLE III.  TRAINING PARAMETERS OF THE GOOGLENET-BASED CNN 

MODEL FOR THE 10-CLASS EMG CLASSIFICATION PROBLEM 

Training parameters 
Without Data 

Augmentation 

With Data 

Augmentation 

Training scalograms 3,960 7,920 

Number of iterations 132 316 

Iterations per epoch 66 158 

Training time 119 min 27 sec 532 min 19 sec 

Achieved accuracy 93.33% 94.66% 

 

The corresponding confusion matrix of this ten-class problem 

is shown in Fig. 5.  

 

Figure 5. The confusion matrix for the 10-class EMG classification with data 

augmentation. 

 

In addition, we compared the proposed deep learning system 

with traditional classifiers employing a manual feature 

engineering approach. These classifiers are based on 

temporal, spatial, and frequency-domain features which we 

extracted for the our collected two-class EMG dataset. The 

best classification results for a traditional classifier were 

achieved using the fine Gaussian support vector machine with 

an accuracy of 89.60%. 
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V. CONCLUSION AND FUTURE WORK 

We developed an end-to-end deep learning system employing 

transfer learning for EMG signal classification. The need for 

such systems which introduce fast and highly accurate 

classification increased dramatically. Relying only on one-

channel EMG electrode, we were able to achieve good 

classification performance on a collected two-class EMG 

dataset. The proposed system could be fine-tuned for other 

binary classification applications. With technological 

advancements in the era of the Internet of things, there has 

been a growing need for the design of commercial wearables 

whose functions could be extended to include EMG sensors. 

Therefore, we investigated the fine-tuning of pretrained CNN 

architectures for EMG classification problems with different 

numbers of classes. We investigated CNN variants which can 

be generally integrated into systems for prosthetic control, 

robotic manipulations, or supporting daily tasks for able-

bodied people. The GoogLeNet-based CNN model achieved 

the best performance with less than 350 milliseconds needed 

for the classification of each frame. In addition, our approach 

was validated with a ten-class finger movement dataset. Two 

EMG channels were recorded and helped obtain good spatial 

information for individual and combined finger movements. 

Concatenating the scalogram features from the two channels 

led to improved CNN performance. The classification 

performance was further improved through data augmentation 

[29], which improved the classification accuracy of the 

GoogLeNet-based model.  We also compared the proposed 

deep learning models against traditional classifiers based on 

hand-crafted features. The best classification results for a 

traditional classifier were achieved using the fine Gaussian 

support vector machine with an accuracy of 89.60%. Clearly, 

our system gives superior results compared to traditional 

classifiers based on manual feature engineering.  
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