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Abstract— Accurate torque estimation during dynamic con-
ditions is challenging, yet an important problem for many
applications such as robotics, prosthesis control, and clinical
diagnostics. Our objective is to accurately estimate the torque
generated at the elbow during flexion and extension, under
quasi-dynamic and dynamic conditions. High-density surface
electromyogram (HD-EMG) signals, acquired from the long
head and short head of biceps brachii, brachioradialis, and
triceps brachii of five participants are used to estimate the
torque generated at the elbow, using a convolutional neural net-
work (CNN). We hypothesise that incorporating the mechanical
information recorded by the biodex machine, i.e., position and
velocity, can improve the model performance. To investigate
the effects of the added data modalities on the model accuracy,
models are constructed that combine EMG and position, as well
as EMG with both position and velocity. R2 values are improved
by 2.35%, 37.50%, and 16.67%, when position and EMG are
used as inputs to the CNN models, for isotonic, isokinetic, and
dynamic cases, respectively compared to using only EMG. The
model performances improves further by 2.29%, 12.12%, and
20.50% for isotonic, isokinetic, and dynamic conditions, when
velocity is added with the EMG and position data.

I. INTRODUCTION

The electromyogram (EMG) signal has been widely
used for prosthesis control, medical rehabilitation, sports
medicine, and clinical diagnostics [1]–[4]. The surface EMG,
a non-invasive muscular activity detection method, has been
used to estimate the level of generated muscle force by
mapping a relationship between the electrical activity of the
muscle (represented by the EMG amplitude) and the muscle
force/ joint torque [5]–[8]. Muscle force/joint torque estima-
tion is important in many applications such as controlling
prosthetic hands and assistive devices [1], [9].

Different approaches have been used to estimate torque,
based on EMG signals [5], [6], [10], [11]. Some studies
have used Hill’s muscle model [11] in which an appropriate
estimation of muscle physiological parameters is needed.
Other modeling methods, such as polynomial functions,
artificial neural networks (ANNs), linear regression, and fast
orthogonal search (FOS) are used to capture the EMG-force
relationship, without requiring any knowledge about muscle
and joint dynamics [5]–[8], [12], [13].

Using ANNs has shown promising results in EMG based
force estimation [6], [7], [14]. Mobasser et al. investigated
an ANN architecture for force estimation, under isometric,
isotonic and light load (dynamic) conditions [7], where the
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model was able to predict the nonlinear relation between
the EMG signal and the force generated at the wrist [7]. A
relationship between EMG signal and the isokinetic elbow
joint torque was determined using a 3-layer ANN, where the
EMG signals obtained from the biceps and triceps, elbow
joint angle, and velocity were used as inputs to the ANN and
the results showed that the model estimated the joint torque
reliably [14]. Hajian et al. used extracted time and frequency
domain features from high density EMG (HD-EMG) signals,
recorded from the elbow flexor muscles during isometric
elbow flexion, to estimate force induced at the wrist using
a multilayer perceptron neural network (MLPNN) [6]; they
obtained a percent root mean square error (%RMSE) value
of 6.21. A convolutional neural network (CNN) and long
short-term memory (LSTM) network were used to estimate
force from EMG signals [15], where the results suggested
that the models were applicable for force estimation.

This study has two objectives. First, to estimate generated
torque at the elbow from EMG under quasi-dynamic and
dynamic conditions. Second, to improve the estimates by
incorporating mechanical information into the model. Linear
HD-surface electrode arrays with eight monopolar channels
were used to record EMG signals obtained from the el-
bow flexor and extensor muscles, during isotonic, isokinetic
(quasi-dynamic), and dynamic elbow flexion and extension.
These EMG signals are then mapped to the generated torque
at the elbow, using a CNN model. We improve the torque
estimation performance by adding mechanical information
namely position and velocity data to the model for the
operational conditions.

II. METHOD

A. Data Collection

Five healthy subjects (3 females and 2 males; age 27± 6
years) were recruited for this study. The experimental pro-
cedures have been approved by the Health Sciences and Af-
filiated Teaching Hospitals Research Ethics Board (HSREB)
of Queen’s University, Kingston, Canada. Subjects provided
informed consent before participating in the experiment.
The experiments were conducted using the biodex model
840− 000, which is a reliable multi-joint system developed
for testing and rehabilitation of the human musculoskeletal
system. The biodex was set up for the elbow, as shown in
Figure 1. Data were recorded as subjects performed isotonic,
isokinetic (quasi-dynamic), and dynamic elbow flexion and
extension. The isotonic case included 3 constant applied
torque levels: 5, 8 and 12 Nm; and the isokinetic case
included 3 constant rotational velocity levels: 60, 90 and 180
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deg/sec. There were no limitations on the applied torque level
and velocity in the dynamic case. For each subject, the data
were collected in one session with 12 trials per condition
(2 sets of 6 repetitions with 30 seconds rest between sets).
Torque, position and velocity data were recorded by the
biodex. Appropriate rest periods were provided in order to
avoid muscle fatigue.

The EMG signals were recorded using 4 linear HD-
electrode arrays with 8 monopolar channels (5 mm spacing)
from the long head and short head of biceps brachii, the
brachioradialis, and the triceps brachii muscles. For the
biceps muscles, the fourth electrode of each array was
located at the SENIAM recommended sensor location. For
the brachioradialis, the fourth electrode was placed at one-
third the length of the forearm measured from the elbow.
For the long head of triceps brachii, electrodes were placed
at 50% of the distance between the posterior crista of the
acromion and the olecranon at 2 finger widths medial to
the line between them. The EMG data were collected using
the Bioelecttronica EMG-USB2 high density (HD) system,
which sampled the EMG data at 2048 Hz. A driven right leg
(DRL) circuit was used to reduce the 60 Hz interference by
attaching two reference electrodes on the right and left wrists.
The experimental setup, showing a subject seated in the
biodex machine, the EMG-USB2 HD-system and the HD-
electrodes (with 8 monopolar channels) is shown in Figure 1.

Fig. 1: The experimental setup, showing the biodex and HD-electrode arrays (8 sensors)
mounted on the subject’s arm, is presented.

B. Pre-processing

Differential HD-EMG signals are obtained by subtract-
ing neighboring channels, resulting in 7 channels for each
muscle. Each differential channel is band-pass filtered with
cut-off frequencies of 10 Hz and 500 Hz using an eighth-
order Butterworth filter to remove noise and artifact from
EMG signals. Torque, position, and velocity signals recorded
from Biodex, originally sampled at 1250 Hz, are up-sampled
using linear interpolation to 2048 Hz, in order to match

the sampling frequency of the EMG. The Biodex data are
smoothed using a 300-point moving average filter. Then,
the data during contraction are extracted and segmented for
analysis, with segment length of 50 ms and overlap of half
of the segment length. Then, the segmented EMG signals,
position and velocity data are used as inputs to the model to
estimate the torque generated at the elbow.

The differential EMG signals recorded from one channel
of the elbow flexor and extensor muscles, the torque and
position data recorded by the biodex, for an isotonic 12 Nm
protocol from subject 3 are shown in Figure 2.

-0.02

0

0.02

L
H

B
 (

m
V

)

-0.02

0

0.02

SH
B

 (
m

V
)

-0.03

0

0.03

B
R

 (
m

V
)

-0.005

0

0.005

T
R

 (
m

V
)

-200

0

200

V
 (

de
g/

s)
60

120

180

P 
(d

eg
)

0 5 10 15 20 25 30 35 40
Time (s)

0

-30

30
T 

(N
m

)

Fig. 2: Sample data recorded for 2 sets of contractions from one subject, during
dynamic condition is shown. From top to bottom: EMG signals recorded from;
LHB: long head of the biceps brachii, SHB: short head of the biceps brachii, BR:
brachioradialis, and TR: triceps brachii; data recorded by the Biodex; V: velocity, P:
position, and T: Torque.

C. Torque Estimation

Torque modelling is performed using a deep learning
method, CNN, where the model’s inputs are the raw EMG
recordings of all channels of the four muscles. The ground
truth outputs are the recorded torque measurements. An intra-
subject training and validation scheme is used.

1) CNN Architecture: CNN is an extension of standard
artificial neural networks, which is often used for image and
video analysis, as well as other signals. CNN is capable of
dealing with high-dimensional raw data, with no need for
feature extraction, because it is able to learn from the data
and extract features from it.

The CNN architecture has several layers, where the main
components are convolutional and pooling layers. The convo-
lutional layer computes the convolution of the input data by a
set of filters; convolutions are executed by sliding the kernel
(filter or feature detector) over the dimensions of the input
data. Then, its output goes through a nonlinear activation
function (such as a sigmoid, hyperbolic tangent, or rectified
linear unit (ReLU)), where the non-linearity will be added
to the model. A convolutional layer is usually followed by
a pooling layer to reduce the dimensionality of the feature
map, decrease computation, and avoid overfitting. A fully
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Fig. 3: The CNN architecture. Conv: convolutional layer, Pool: pooling layer, and FC:
fully connected layer, where the last FC is the regression layer.

connected layer (dense layer), where each neuron receives
input from all the neurons of the previous layer, can be used
after several convolution and pooling layers. The final layer,
which is also a fully connected layer with a single output
neuron, is a regression layer which computes the output
force.

The CNN model developed for this study consists of an
input layer, two convolutional layers, where each layer has
normalization and ReLU as an activation function, two max-
imum pooling layers (one after each convolutional layer),
a fully connected (FC) layer, and a regression layer. The
input layer takes segmented raw EMG data (28 differential
signals), position, and velocity data. The convolutional layers
have 16 and 64 filters, respectively, where all filters were
3 × 3. To avoid overfitting, L2 regularization is used. A
batch size of 256 is used, since sizes below that result in
longer training times while not improving the performance,
and larger batch sizes decrease the regression accuracy. The
number of training epochs is 100. Higher numbers do not
improve the performance and result in longer training times,
while fewer epochs reduce the performance. The first FC
layer has 128 neurons. The CNN model’s architecture is
shown in Figure 3.

2) Model Training and Validation: The dataset is split
into training and testing sets, where 5-fold cross-validation
is used. The evaluation criterion used is R2. Torque modeling
is done in a subject-specific manner, so that the data for each
subject are used separately to develop a model. The model
is trained with the adaptive moment estimation (ADAM)
algorithm as an optimizer, where the values used are, α =
0.001, β1 = 0.9, and β2 = 0.999.

III. RESULTS AND DISCUSSION

The elbow torque estimation is done for individual sub-
jects, under the different quasi-dynamic and dynamic exper-
imental conditions. The results are shown in Figure 4 for
the test set, for the isotonic case with different torque levels,
for the isokinetic case with different velocities, and for the
dynamic case. We develop three CNN models to estimate
the torque, where the model inputs are: i) the differential
HD-EMG signals acquired from 4 muscles (28 channels); ii)
the HD-EMG signals and position data (the elbow angle in
degrees); and iii) the HD-EMG signals, position and velocity
data. As shown in Figure 4, the average R2 values across
subjects improve by 2.47%, 1.17%, and 1.12% for isotonic
cases (5, 8, and 12 Nm respectively) and by 26.78%, 36.95%,
and 50% for isokinetic cases (60, 90, and 180 deg/sec

respectively), and finally by 16.67% for dynamic case, when
the position data are fused with the EMG data. When velocity
information is also considered, the R2 values improved for
the isotonic conditions by 0%, 3.48%, and 2.22% for 5, 8,
and 12 Nm respectively, and for the isokinetic conditions by
5.63%, 12.90%, and 20.63% for 60, 90, and 180 deg/sec
respectively, compared to when EMG and position data are
used. For dynamic condition, the performance improved by
20.50%, when the velocity data are incorporated in the
model.

Accordingly, it can be observed that the incorporation
of position and velocity data are more beneficial for the
isokinetic and dynamic cases than the isotonic cases. Ex-
amining EMG signal amplitudes, it is apparent that for the
constant torque (isotonic) contractions, the signal amplitude
is approximately constant, despite the changing joint angle.
For the isokinetic and dynamic conditions, the EMG am-
plitude and torque are not constant, and the EMG did not
track the generated torque. Thus, it is possible to reliably
estimate torque from EMG in the isotonic cases, but for
the other two conditions, mechanical information is needed
for acceptable torque estimation. Figures 5 and 6 show an
example of estimated versus the measured torque for one
subject during the isotonic 8 Nm, and dynamic conditions,
where the obtained R2 values are given.
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Fig. 4: The mean and standard deviation of R2 values across the subjects for all
three models using only EMG, EMG and position (EMG & P), and EMG, position
and velocity (EMG, P & V) data for isotonic (It), isokinetic (Ik), and dynamic (Dyn)
conditions.

We also compare our results obtained by the CNN model
with MLPNN and support vector machine for regression
(SVR) with linear, polynomial and radial basis function
(RBF) kernels. For the MLPNN, we use two hidden layers
of 16 and 20 dimensions, and the ReLU activation function.
The batch size is 256, and the number of epochs is 100.
The MLPNN is trained and tested with raw data and then
the MLPNN and SVR are trained using a set of extracted
features: mean absolute value, maximum and standard de-
viation of the EMG, position, and velocity signals, and the
sum of the wavelength of the EMG signal. Our comparison
results are shown in Table I as the average R2 values across
subjects for the models in which EMG, position, and velocity
data are used. The CNN model’s performance superior for all
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TABLE I: COMPARISON OF R2 VALUES BETWEEN DIFFERENT MODELS USING EMG, POSITION, AND VELOCITY INPUTS FOR ISOTONIC, ISOKINETIC, AND
DYNAMIC CONDITIONS.

Isotonic-5 Isotonic-8 Isotonic-12 Isokinetic 60 Isokinetic 90 Isokinetic 180 Dynamic
MLP (2 layers) 0.62± 0.21 0.56± 0.17 0.72± 0.18 0.12± 0.32 0.15± 0.34 0.26± 0.24 0.29± 0.11
MLP (features) 0.83± 0.09 0.80± 0.41 0.88± 0.07 0.15± 0.24 0.42± 0.11 0.35± 0.15 0.36± 0.18

SVM (RBF) 0.70± 0.16 0.70± 0.23 0.86± 0.08 −0.14± 1.12 0.50± 0.19 0.45± 0.21 0.36± 0.11
SVM (polynomial) 0.64± 0.17 0.21± 0.33 0.51± 0.21 −0.08± 1.22 0.37± 0.13 0.12± 0.25 0.22± 0.15

SVM (linear) 0.67± 0.06 0.64± 0.21 0.68± 0.12 −0.24± 1.21 0.25± 0.13 0.34± 0.26 0.14± 0.18
CNN 0.83± 0.08 0.89± 0.04 0.92± 0.05 0.75± 0.05 0.70± 0.06 0.76± 0.06 0.76± 0.08
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Fig. 5: The measured torque versus the estimated torque, for one subject, during
isotonic (8 Nm) condition.
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Fig. 6: The measured torque versus the estimated torque, for one subject, during
dynamic contractions.

experimental conditions. The MLPNN models with features
obtain close R2 values to the CNN model for the isotonic
cases. However, the CNN model does not need any feature
extraction prior to the modelling, since the model itself is
able to extract features. Also, the other methods are not able
to estimate torque during isokinetic (especially 60 deg/sec)
and dynamic contractions as well as the CNN.

IV. CONCLUSIONS AND FUTURE WORK

Four HD-EMG electrode arrays were used to acquire
EMG signals from the long head and short head of biceps
brachii, brachioradialis, and triceps brachii during isotonic,
isokinetic, and dynamic elbow flexion and extension. The
purpose of this study was to estimate the generated torque
at the elbow, using a CNN. We obtained average R2 values
of 0.85 ± 0.07, 0.48 ± 0.10, and 0.54 ± 0.05 for isotonic,
isokinetic, and dynamic conditions using the EMG signals.
Positional information is added to the model to investigate
its effect on model accuracy. Our results show that the

torque estimation improves when considering the mechanical
information, especially for the isokinetic and dynamic cases.
Thus, for fully dynamic contractions where the torque level,
position, and movement speed are not controlled, the EMG
signal will not be sufficient for reliable torque estimation,
and incorporating mechanical information such as position
and velocity is essential. For future work, to conduct a
more comprehensive study, individuals across a wider age
range and participants with neuromuscular problems may be
considered.

REFERENCES

[1] C. Castellini and P. van der Smagt, “Surface EMG in advanced hand
prosthetics,” Biol. Cybern., vol. 100, no. 1, pp. 35–47, 2009.

[2] P. Parker, K. Englehart, and B. Hudgins, “Myoelectric signal process-
ing for control of powered limb prostheses,” J. Electromyogr. Kinesiol.,
vol. 16, no. 6, pp. 541–548, 2006.

[3] N. Kumar, D. P. Singh, D. Pankaj, S. Soni, and A. Kumar, “Exoskele-
ton device for rehabilitation of stroke patients using SEMG during
isometric contraction,” Advanced Materials Research, vol. 403, pp.
2033–2038, 2012.

[4] K. A. Boyer and B. M. Nigg, “Muscle tuning during running:
implications of an un-tuned landing,” J. Biomech Eng., vol. 128, no. 6,
pp. 815–822, 2006.

[5] G. Hajian, B. Behinaein, E. Morin, and S. A. Etemad, “Improving
wrist force estimation with surface EMG during isometric contrac-
tions,” Can. Med. Biol. Eng. Conf., vol. 41, pp. 1–4, 2018.

[6] G. Hajian, E. Morin, and A. Etemad, “EMG-based force estimation
using artificial neural networks,” Can. Med. Biol. Eng. Conf., vol. 42,
pp. 1–4, 2019.

[7] F. Mobasser and K. Hashtrudi-Zaad, “A comparative approach to hand
force estimation using artificial neural networks,” Biomed Eng Comput
Biol., vol. 4, pp. BECB–S9335, 2012.

[8] C. Dai, B. Bardizbanian, and E. A. Clancy, “Comparison of constant-
posture force-varying EMG-force dynamic models about the elbow,”
IEEE Trans. Neural Syst. Rehabilitation Eng., vol. 25, no. 9, pp. 1529–
1538, 2016.

[9] Y. Sankai, “Hal: Hybrid assistive limb based on cybernics,” in Robot.
Res. Springer, 2010, pp. 25–34.

[10] G. Hajian, A. Etemad, and E. Morin, “Automated channel selection in
high-density sEMG for improved force estimation,” Sensors, vol. 20,
no. 17, p. 4858, 2020.

[11] F. Romero and F. Alonso, “A comparison among different hill-
type contraction dynamics formulations for muscle force estimation,”
Mechanical Sciences, vol. 7, no. 1, pp. 19–29, 2016.

[12] G. Hajian, A. Etemad, and E. Morin, “An investigation of dimension-
ality reduction techniques for EMG-based force estimation,” 41st Ann
Int. Conf. IEEE Engi. Med. Biol. So. (EMBC), pp. 698–701, 2019.

[13] O. Bida, D. Rancourt, and E. Clancy, “Electromyogram EMG am-
plitude estimation and joint torque model performance,” Proc. IEEE
Conf. Northeast Bioeng, pp. 229–230, 2005.

[14] J.-J. Luh, G.-C. Chang, C.-K. Cheng, J.-S. Lai, and T.-S. Kuo,
“Isokinetic elbow joint torques estimation from surface EMG and
joint kinematic data: using an artificial neural network model,” J.
Electromyogr. Kinesiol., vol. 9, no. 3, pp. 173–183, 1999.

[15] L. Xu, X. Chen, S. Cao, X. Zhang, and X. Chen, “Feasibility study of
advanced neural networks applied to sEMG-based force estimation,”
Sensors, vol. 18, no. 10, p. 3226, 2018.

668


